
Understanding Adversarial Robustness in Deep Learning

by

Bojie Ma

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Computer Science
University of Toronto

© Copyright 2025 by Bojie Ma

Understanding Adversarial Robustness in Deep Learning

Bojie Ma
Doctor of Philosophy

Department of Computer Science
University of Toronto

2025

Abstract

This thesis studies the adversarial robustness of deep learning models. Our investigation covers

various aspects of this phenomenon, including the development of two new defense algorithms, two

new attack algorithms, a novel definition of hierarchical adversarial robustness, and an analysis of

how the optimization process affects model robustness.

We begin by introducing the Second-Order Adversarial Regularizer (SOAR) as a defense strategy

to improve model robustness. Unlike traditional data augmentation approaches that rely on com-

putationally expensive algorithms to generate adversarially perturbed training samples, we derive

a regularizer that mimics the effect of data augmentation, eliminating the need for it during train-

ing. We empirically demonstrate the improved adversarial robustness of SOAR-regularized models

against white-box and transferred perturbations.

In practice, many machine learning systems still forgo robustification techniques due to the

additional computational overhead. This motivates our investigation into the robustness of models

obtained through standard training regimes. Focusing on the optimization process, we examine

the robustness of models trained with different algorithms. As we will see, models trained using

stochastic gradient descent exhibit far greater robustness compared to those trained with adaptive

gradient methods, such as Adam and RMSProp. Through a frequency-domain analysis, we discover

that specific properties of datasets, seemingly irrelevant to generalization, can actually result in

vulnerabilities when models are trained using certain optimizers. These insights underscore the

importance of considering both the optimization strategy and dataset characteristics in improving

model robustness.

Extending our exploration of dataset properties, we recognize that as datasets grow in size and

complexity, the number of classes and their hierarchical relationships become increasingly significant.

However, current ways of evaluating adversarial robustness, which treat all misclassifications equally,

risk overestimating robustness or underestimating attack effectiveness. To address this, we introduce

the concept of hierarchical adversarial robustness. For datasets with hierarchical structures, we

define hierarchical adversarial examples as those that lead to misclassifications at the meta-class

ii

level. Building on this, we develop an attack algorithm designed to generate such examples and

propose an architectural solution to improve models’ robustness against them.

Finally, we take on the role of an adversary. Current robustification strategies predominantly

involve replacing the training samples with their adversarially perturbed counterparts, highlighting

the importance of understanding and improving adversarial example generation. Therefore, in our

last work, we focus on improving the transferability of perturbations. We develop a fine-tuning

method called model alignment to transform any model into one from which any attack algorithms

can generate more transferable perturbations.

iii

Acknowledgements

I thank my parents for their unconditional love. This love has shaped who I am today, and I hope

to continue making you proud.

I thank my advisor, Amir-massoud Farahmand. You taught me to approach research and life with

a scientific mind, guiding me through an often noisy world.

I thank my co-advisor, Rich Zemel, and my committee chair, Nicolas Papernot. You showed me

what great researchers are like and set a high bar to aspire to.

I thank the senior PhD students I met along the way. Our collaborations taught me lessons no

course ever could.

I thank my friends. Your presence was a constant source of joy and laughter throughout this journey.

I thank my dog, AUV. Your companionship meant more than words can say.

Lastly, I thank my wife, Abby Zhu. You are my best friend and greatest supporter. I am excited

about our future together.

iv

Contents

1 Introduction: The Brittleness of Neural Networks 1

1.1 Contributions . 3

2 Adversarial Perturbations: Where to Find Them and How to Avoid Them 6

2.1 Definitions . 6

2.2 Conjectures on the Existence of Adversarial Perturbations 8

2.3 Generating Adversarial Perturbations . 10

2.4 The Robust Optimization Framework . 11

2.5 The Robustness-Accuracy Trade-off . 12

2.6 The Transferability of Adversarial Perturbations . 13

3 Regularized Training for Improving Adversarial Robustness 15

3.1 Introduction . 15

3.1.1 Contributions . 16

3.2 Understanding Adversarial Training Using Linear Regression with an Over-parametrized

Model . 16

3.3 Adversarial Regularization: An Alternative to Adversarial Training 19

3.3.1 First-Order Adversarial Regularization . 19

3.3.2 Second-Order Adversarial Regularization . 20

3.3.3 Revisiting the Linear Regression Example . 22

3.3.4 Avoiding Gradient Masking . 23

3.3.5 Related Work . 25

3.4 Experiments . 26

3.4.1 Experiment Setup . 26

3.4.2 Evaluating Model Robustness . 27

3.5 Conclusions . 30

3.5.1 Challenges and Limitations . 30

3.A Implementation Details . 31

3.B Effect of the Number of Randomly Sampled z on SOAR Regularized Loss 32

3.C SOAR and FOAR with Different Initializations . 33

3.D Robustness Under ℓ2-norm Constrained Perturbations 33

3.E Robustness Improvement with Increasing Model Capacities 34

3.F Discussion on Gradient Masking . 34

v

4 Understanding the Robustness Difference between SGD and Adaptive Gradient

Methods 36

4.1 Introduction . 36

4.1.1 The Robustness Difference between Models Trained by Different Algorithms . 37

4.1.2 Contributions . 38

4.2 Background . 38

4.2.1 Optimizations with Adaptive Gradient Algorithms 38

4.2.2 Frequency Representation of Signals . 40

4.3 A Claim on How Models Use Irrelevant Frequencies 41

4.3.1 Observation I: Irrelevant Frequencies in Natural Signals 42

4.3.2 Observation II: Model Robustness along Irrelevant Frequencies 45

4.4 Linear Regression Analysis with an Over-parameterized Model 47

4.4.1 Problem Setup . 47

4.4.2 Analysis on the Learning Dynamics of GD and signGD 49

4.5 Connecting the Norm of Linear Models to the Lipschitzness of Neural Networks . . . 56

4.6 Conclusions . 58

4.6.1 Challenges and Limitations . 58

4.A Implementation Details . 59

4.B Generalization and Robustness Results . 60

4.C Filtering Irrelevant Frequencies . 64

4.D Linear Regression Analysis . 65

4.D.1 Understanding the Synthetic Dataset . 65

4.D.2 Understanding the Dynamics of signGD with Σ̃ = diag
{
σ̃2
0 , σ̃

2
1 , 0

}
. 68

4.D.3 From Irrelevant Frequencies to Spatially Redundant Dimensions 82

4.E Additional Figures . 83

5 Understanding and Improving Hierarchical Adversarial Robustness 94

5.1 Introduction . 94

5.1.1 Contributions . 95

5.2 Hierarchical Adversarial Robustness . 95

5.3 Untargeted PGD’s Ineffectiveness in Degrading Hierarchical Adversarial Robustness 97

5.4 Generating Hierarchical Adversarial Perturbations 98

5.5 Hierarchical Adversarial Robust Network . 99

5.5.1 Network Design . 100

5.5.2 Inference . 100

5.5.3 Training . 101

5.6 Experiments . 101

5.6.1 Experiment Setup . 102

5.6.2 Evaluation of Hierarchical Adversarial Robustness Using Hierarchical PGD . 102

5.6.3 Improving Hierarchical Adversarial Robustness with HAR 103

5.7 Conclusions . 104

5.7.1 Challenges and Limitations . 104

5.A Comparison of Trainable Parameters . 105

5.B Results on CIFAR-10 and CIFAR-5x5 with ℓ∞-norm Constrained Perturbations . . . 105

vi

5.C Results on CIFAR-100 with ℓ2-norm Constrained Perturbations 106

5.D Comparison of Clean Test Accuracy on CIFAR-10 106

6 Improving Adversarial Transferability via Model Alignment 107

6.1 Introduction . 107

6.1.1 Contributions . 109

6.2 Background . 109

6.2.1 Generating Transferable Perturbations . 109

6.2.2 Understanding Adversarial Transferability . 110

6.3 Formulation of Model Alignment . 111

6.4 Understanding Model Alignment . 112

6.4.1 Evaluating Similarity between the Source and Witness Model 112

6.4.2 Aligned Model Exploits More Semantic Features 113

6.4.3 Model Alignment Yields Smoother Loss Surface 113

6.5 Experiments . 115

6.5.1 Experiment Setup . 115

6.5.2 Model Alignment Improves Transferability . 116

6.5.3 Ablation Studies . 118

6.6 Conclusions . 123

6.6.1 Challenges and Limitations . 123

6.A Implementation Details . 123

6.B Experiments on Additional Datasets . 124

6.C Improved Transferability on Defended Models . 124

7 Concluding Remarks 126

7.1 Suggestions for Future Research . 126

Bibliography 129

vii

List of Tables

3.2 Evaluation of classification accuracy for models on the original CIFAR-10 test dataset

and under ℓ∞-norm constrained white-box attacks (%). 27

3.3 Evaluation of classification accuracy for models under ℓ∞-norm constrained pertur-

bations in the black-box setting (%). 28

3.4 Evaluation of classification accuracy for models under ℓ∞-norm constrained pertur-

bations generated using AutoAttack (%). 29

3.9 Evaluation of classification accuracy for models under ℓ2-norm constrained white-box

and transferred perturbations (%). 34

4.1 Comparing the upper bound on the Lipschitz constant and the averaged robust ac-

curacy of neural networks trained by SGD, Adam, and RMSProp. 57

4.3 Evaluation of classification accuracy for models trained using SGD, Adam, and RMSProp

on both the original and perturbed test dataset (%). 61

4.8 Examples of the synthetic data distribution in the frequency and the spatial domain. 65

4.9 The dynamics of the error term in the frequency domain under signGD. 69

5.1 Hierarchical structure of classes within the CIFAR-10 and CIFAR-100 dataset. . . . 96

5.2 Percentage of the misclassified inputs that are still correctly classified at the meta-class

level (%). 98

5.3 Evaluation of meta-class accuracy for flat models and HAR models on the original

CIFAR-100 test dataset, under ℓ∞-norm constrained untargeted and proposed hier-

archical PGD attacks (%). 103

5.4 Evaluation of meta-class accuracy for the HAR models under ℓ∞-norm untargeted

PGD perturbations generated based on the meta-classifier (%). 104

5.6 Evaluation of meta-class accuracy for flat models and HAR models on the original

CIFAR-100 test dataset, under ℓ2-norm constrained untargeted and proposed hierar-

chical PGD attacks (%). 106

5.7 Evaluation of leaf-class accuracy for flat models and HAR models on the CIFAR-10

test dataset. 106

6.1 Evaluation of the change in the similarity between the source and witness model after

model alignment. 112

6.2 Evaluation of the ℓ2-norm of the gradient (∥∇xℓ(x + ∆x, y, θ)∥2) and the largest eigen-

value of the Hessian (λmax(∇2
xℓ(x+ ∆x, y, θ))) on the original (θs) and aligned model

(θa). 115

viii

6.3 Aligning the source model can lead to the generation of more transferable adversarial

examples (%). 117

6.4 Analysis on the impact of witness model capacity on the alignment process (%). . . 119

6.5 Aligning the Res50 source model with multiple Res18 as witness models (%). 120

6.6 Improving transferability via embedding space alignment (%). 120

6.7 Compatibility of model alignment with different attack algorithms (%). 121

6.8 Compatibility of model alignment with model modification-based transfer-enhancing

attack algorithms (%). 122

6.9 Improved transferability from using aligned models in an ensemble (%). 122

6.10 Improved transferability via model alignment on other datasets (%). 125

6.11 Improved transferability on models equipped with defense methods (%). 125

ix

List of Figures

4.1 Comparison between models trained using SGD, Adam, and RMSProp across seven

benchmark datasets. 37

4.2 Illustration of the spectral energy distribution in natural datasets. 42

4.3 Irrelevant frequencies exist in natural datasets. 43

4.4 Examples of filtered images used in Observation I. (Imagenette) 44

4.5 Visualization of the band-limited Gaussian perturbations. 45

4.6 The effect of band-limited Gaussian perturbations on the model. 46

4.7 Empirical validations on (a) the learning dynamics, (b) the standard and adversarial

population risk of linear models optimized under GD, Adam, RMSProp, and signGD. 55

4.8 Analyzing the dynamics of A and B by partitioning the set of values of (A,B) in

[−σ̃2
0η, σ̃

2
0η]× R. 72

5.1 Overview of the HAR Network. 101

6.1 Attacking the aligned source model for more transferable perturbations. 108

6.2 Frequency-domain visualization of the differences in the perturbation generated using

the original and aligned model. 113

6.3 Visualization of the loss surface around adversarial perturbations generated from the

original and aligned model. 114

x

Chapter 1

Introduction: The Brittleness of

Neural Networks

Machine learning models are powerful statistical tools. In theory, it was guaranteed that mul-

tilayer perceptrons with just a single hidden layer possess significant expressive power as universal

function approximators (Hornik et al., 1989). In practice, deep neural networks (DNNs) with billions

of parameters can complete a wide range of tasks when provided with sufficient training data —

they are capable of classifying objects, translating languages, and even driving cars.

Despite their power, machine learning models are highly brittle. By introducing carefully crafted

perturbations to the input, models trained for weeks or months can be rendered useless, producing

incorrect results that would otherwise have been accurate (Szegedy et al., 2014). These manipulated

inputs are known as adversarial examples, and the algorithms used to generate them are called

attacks. The ability of models to maintain their performance under such perturbations is referred

to as adversarial robustness, while methods aimed at enhancing this robustness are known as

defenses. What makes adversarial examples particularly interesting is that the perturbations are

often imperceptible to human observers. This underscores the importance of adversarial robustness

in deep learning models, especially when deploying them in safety-critical applications. As a result,

understanding and improving model robustness has become a significant area of research (Bai et al.,

2021).

If neural networks are Superman, then adversarial examples are their Kryptonite, exposing vul-

nerabilities in these powerful models. However, this is a rather pessimistic view of the situation.

What people often overlook is that tracing the origin of Kryptonite leads us to the planet where

Superman was born. In other words, studying adversarial examples can provide insights into the

inner workings of deep learning models. By understanding the vulnerabilities of these models, we

can develop more robust models that are less susceptible to attacks.

In this thesis, adversarial examples are the protagonists of our story. With a focus on the

vision domain, we will explore the adversarial robustness of deep learning models, from developing

more effective defense and attack algorithms to understanding particular components of the model

training pipeline that contribute to vulnerability. In the following, we first provide a few examples

to illustrate the consequence of attacks on machine learning models, followed by a summary of the

contributions of this thesis.

1

CHAPTER 1. INTRODUCTION: THE BRITTLENESS OF NEURAL NETWORKS 2

Beyond the Pig and the Airplane

Perhaps the most common example used to illustrate the effect of an attack is the pig/airplane

scenario. In this case, imperceptible perturbations added to an image of a “pig” can lead a highly

accurate classifier to misidentify it as an “airplane”. While this example adeptly captures the essence

of adversarial examples, it does not fully represent the real-world consequences of such attacks on

machine learning models.

NeuralHash was an algorithm developed by Apple to detect child sexual abuse material (CSAM)

by creating unique digital fingerprints, or “hashes”, of images (Apple, 2021). The system was

designed to be used to scan and hash iCloud photos and compare them against a database of known

CSAM hashes, provided by the National Center for Missing and Exploited Children. By doing so,

Apple can identify matches without directly accessing the image content, thereby preserving user

privacy.

Traditional hashing algorithms are not suitable for this task because they are sensitive to minor

changes in the input (Luo et al., 2023; Chi et al., 2017). For example, a single pixel change could alter

the resulting hash significantly, enabling CSAM perpetrators to easily evade detection by making

trivial modifications to images.

NeuralHash addressed this by employing a convolutional neural network trained within a con-

trastive framework. Given pairs of images, it learned to assign similar hashes to positive pairs

(images that are simple transformations of each other) and different hashes to negative pairs (com-

pletely different images). This way, the hashing algorithm becomes less sensitive to minor changes

in the input.

However, vulnerabilities were exposed shortly after NeuralHash’s release (Athalye, 2021). Re-

searchers demonstrated that adding imperceptible perturbations to an image could manipulate its

hash. This led to two critical vulnerabilities. First, in the “same image, different hash” scenario, an

adversary slightly can alter an illegal image (e.g., CSAM), so that it no longer matches its known

hash. This evades detection by law enforcement and undermines the system’s ability to flag pro-

hibited content. Second, in the “different image, same hash” scenario, an adversary can create a

benign image that shares the same hash as known illegal content. This could be weaponized to

falsely implicate innocent users or traumatize recipients. Both cases fundamentally compromise the

system’s reliability and safety.

Autonomous driving systems are among the most safety-critical applications of machine

learning models, where the consequences of attacks can be catastrophic (Baidu, 2017; comma.ai,

2018; Tesla, 2018). For example, a 2019 study showed that placing adversarially generated stickers

on a stop sign could cause an autonomous vehicle to misclassify it as a speed limit sign (Eykholt et

al., 2018). This misclassification could result in the vehicle failing to stop at an intersection, thereby

increasing the risk of a collision. While this type of attack is indeed alarming, some argue that it is

more practical, low-cost, and reliable to simply remove the stop sign from the intersection (Woitschek

et al., 2021). Therefore, such attacks on traffic signs, much like the pig/airplane example, serve more

as proofs of concept rather than practical threats.

For systems that rely primarily on camera footage, such as Tesla’s Autopilot, lane detection is

crucial for maintaining vehicle control. Jing et al. (2021) demonstrated that subtle perturbations

added to road markings could mislead a Tesla Model S into veering into the opposite lane. By

reverse-engineering Tesla Autopilot’s firmware, they discovered the sensitivity of the lane detection

CHAPTER 1. INTRODUCTION: THE BRITTLENESS OF NEURAL NETWORKS 3

module to such manipulations. The researchers showed that these perturbations could be practically

implemented in the real world using materials like stickers, and potentially more covert substances

like special paints, which are invisible to the human eye but detectable by cameras. This suggests

a more concerning potential for adversaries to disrupt lane detection systems, posing severe safety

risks.

Facial recognition systems have seen significant performance improvements due to advance-

ments in deep learning, with applications that range from unlocking smartphones to automated

security screenings at border control and military facilities (Kortli et al., 2020). Compromising

these systems can have serious consequences. Research has demonstrated that these systems can be

deceived by altering a person’s physical appearance before capturing their image. Some methods

for fooling these systems involve projecting specific patterns onto the face (Zhou et al., 2018), which

can be cumbersome. In contrast, others are more practical, utilizing simple accessories like glasses

or hats (Sharif et al., 2016; Komkov et al., 2021). This poses substantial security risks, especially

where adversaries might bypass checkpoints by using such disguises. For a comprehensive survey

on attacks against facial recognition systems, we refer the reader to the work of Vakhshiteh et al.

(2021).

1.1 Contributions

The pig/airplane example illustrates a fundamental concept: subtle input perturbations can de-

ceive machine learning models. Meanwhile, the NeuralHash incident exposes the severe real-world

implications of such vulnerabilities, demonstrating the potential for misuse. Both autonomous driv-

ing and facial recognition systems underscore the critical need for robustness in machine learning

applications, especially in those used for security and safety purposes. My goal of this thesis is to

investigate various aspects of the adversarial robustness phenomenon, ranging from the development

of more effective defense and attack algorithms to understanding specific components of the model

training pipeline that contribute to vulnerability. The high-level contributions of this thesis include:

• Introducing two robustification methods: one algorithmic and the other architectural, both

designed to improve the adversarial robustness of deep learning models;

• Introducing two attack algorithms: one targeting hierarchical class structures in datasets and

the other improving the transferability of perturbations;

• Investigating the robustness difference between models trained by different optimization al-

gorithms.

Throughout this thesis, we focus on the supervised learning setting with applications in computer

vision, where the input data is an image and the output is a class label. In addition to this intro-

ductory chapter that motivates my research work, the thesis comprises four chapters presenting new

contributions (Chapters 3 to 6). It also includes a chapter (Chapter 2) that provides the reader with

the necessary background related to adversarial robustness, focusing particularly on topics relevant

to the work introduced in this thesis. For background materials that are directly related to the indi-

vidual chapters, an additional background section will be provided at the beginning of the respective

chapter. Chapter 7 summarizes the thesis, highlighting its limitations and suggesting potential areas

for future investigation. In the remainder of this section, we summarize the key contributions of

each chapter.

CHAPTER 1. INTRODUCTION: THE BRITTLENESS OF NEURAL NETWORKS 4

SOAR: Second-Order Adversarial Regularization (Chapter 3)

The most common approach to improving the robustness of DNNs against adversarial examples is to

train with perturbed inputs. However, this method requires large amount of additional data (Schmidt

et al., 2018). In this chapter, we propose a novel regularization approach as an alternative. To de-

rive the regularizer, we formulate the adversarial robustness problem under the robust optimization

framework (Chapter 2.4) and approximate the loss function using a second-order Taylor series ex-

pansion. The proposed second-order adversarial regularizer (SOAR) is an upper bound based on the

Taylor approximation of the inner-max in the robust optimization objective. We empirically show

that the proposed method significantly improves the robustness of networks against adversarial per-

turbations. This work is reported as (Ma et al., 2020), a joint work with Fartash Faghri, Nicolas

Papernot, and Amir-massoud Farahmand.

Understanding the robustness difference between stochastic gradient de-

scent and adaptive gradient methods (Chapter 4)

Despite attention from the research community, robustness-improving methods are yet to become

the norm for machine learning practitioners due to the additional computational overhead. Most

people still train their models using the standard training regime, selecting from a pool of optimizers

and using the model with the highest validation accuracy. In this chapter, we investigate the

robustness differences between models trained with different optimizers. We first empirically show

that while the difference between the standard generalization performance of models trained using

stochastic gradient descent (SGD) and adaptive gradient methods, such as Adam (Kingma et al.,

2015) and RMSProp (Hinton et al., 2012) is small, those trained using SGD exhibit far greater

robustness under input perturbations. Notably, we demonstrate the presence of irrelevant frequencies

in natural datasets, where noise added to these frequencies do not impact the models’ generalization

performance. However, models trained with adaptive methods show sensitivity to these changes,

suggesting that their use of irrelevant frequencies can lead to solutions sensitive to perturbations.

To better understand this difference, we study the learning dynamics of gradient descent (GD) and

sign gradient descent (signGD) on a synthetic dataset that mirrors natural signals. With a three-

dimensional input space, the models optimized with GD and signGD have standard risks close to

zero but vary in their adversarial risks. Our result shows that linear models’ robustness to ℓ2-norm

bounded changes is inversely proportional to the model parameters’ weight norm: a smaller weight

norm implies better robustness. In the context of deep learning, our experiments show that SGD-

trained neural networks have smaller Lipschitz constants, explaining the better robustness to input

perturbations than those trained with adaptive gradient methods. This work is reported as (Ma

et al., 2023a), a joint work with Yangchen Pan and Amir-massoud Farahmand.

Improving hierarchical adversarial robustness of deep neural networks

(Chapter 5)

The properties of dataset can play a key role in model robustness, as we later demonstrate in Chap-

ter 4. As datasets grow in size and complexity, the number of classes and the hierarchical structure

of the classes also become increasing significant. However, we identify an overlooked aspect in the

CHAPTER 1. INTRODUCTION: THE BRITTLENESS OF NEURAL NETWORKS 5

current literature: adversarial examples can be dangerous, but not all mistakes have equal conse-

quences. In this chapter, we introduce a novel concept called hierarchical adversarial robustness. For

datasets where classes can be grouped into meta-classes, we define hierarchical adversarial examples

as those leading to misclassification at the meta-class level. In terms of attacks, we demonstrate

that untargeted attacks are ineffective at generating hierarchical adversarial perturbations. Building

on this, we propose a hierarchical attack algorithm specifically designed to generate such examples.

On the defense side, we propose an architectural solution to improve hierarchical adversarial robust-

ness, utilizing an ensemble approach with a meta-classifier and multiple leaf classifiers, each trained

independently using adversarial defense techniques. Our empirical results show that the new model

design significantly increases hierarchical adversarial robustness. This work is reported as (Ma et al.,

2021), a joint work with Aladin Virmaux, Kevin Scaman, and Juwei Lu.

Improving Adversarial Transferability via Model Alignment (Chapter 6)

Currently, the most effective methods for improving adversarial robustness rely on some form of

adversarial training. Developing more effective and potent perturbations can often translate to

building more robust models. This motivates us to understand and improve the generation of

adversarial examples. In this chapter, we focus on the transferability of adversarial examples and

introduce a novel model alignment technique aimed at improving a given source model’s ability to

generate transferable adversarial perturbations. During the alignment process, the parameters of

the source model are fine-tuned to minimize an alignment loss. This loss measures the divergence

in the predictions between the source model and another, independently trained model, referred

to as the witness model. To understand the effect of model alignment, we conduct a geometric

analysis of the resulting changes in the loss landscape. Extensive experiments, using a variety of

model architectures, demonstrate that perturbations generated from aligned source models exhibit

significantly higher transferability than those from the original source model. This work is reported

as (Ma et al., 2024), a joint work with Amir-massoud Farahmand, Yangchen Pan, Philip Torr, and

Jindong Gu.

Chapter 2

Adversarial Perturbations:

Where to Find Them and

How to Avoid Them

The goal of this chapter is to provide the background knowledge in adversarial machine learning

upon which this thesis is developed. In Section 2.1, we first introduce the basic setup for a machine

learning problem and define key terms used throughout this thesis. Alongside these definitions, we

also provide a brief introduction to commonly used jargon in the literature on adversarial robustness.

Understanding these concepts clearly is crucial for grasping the broader field, and this thesis will

focus on a subset of them. In Sections 2.2 to 2.6, we discuss a selection of topics that are particularly

helpful in understanding the technical components of this thesis. Further related work, specific to

individual chapters, is developed in their subsequent chapters. For a comprehensive introduction to

deep learning, we refer readers to textbooks such as Hastie (2009) and Goodfellow et al. (2016).

2.1 Definitions

The Basic ML Setup

We focus on the supervised learning setting where we are given a distribution (X,Y) ∼ D, with X

representing the input and Y the corresponding target. The domains of X and Y depend on the

specific context of the learning task. The goal of learning is to obtain a function f : X ×W → Y

that maps inputs X to outputs Y , and is parameterized by a member of the parameter space W .

Those functions are more often referred to as models, and here we use W to collectively represent

the model parameters. The performance of this model is measured by a loss ℓ : Y × Y → R that

quantifies the difference between the model output and the true output. The pointwise loss on a

single input-output pair can be denoted as ℓ(x, y;w) ≜ ℓ(f(x;w), y). During learning, we are given

samples from the distribution D in the form of a dataset {(xi, yi)}Ni=1 and the model f is learned

by minimizing the average loss over the samples: w∗ = arg minw
1
N

∑N
i=1 ℓ(xi, yi;w). This process

is known as empirical risk minimization (ERM).

The ERM process is a fundamental principle in machine learning and is used to learn a model

6

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM 7

that generalizes well to unseen data. The generalization performance of the model is evaluated using

a test set, which comprises a separate set of samples drawn from the same distribution D as the

training data but not used during the training phase. The estimation error is typically defined as

the difference between the model’s performance on the test set and its performance on the training

set.

In the context of adversarial machine learning, the robustness of a model refers to its ability

to maintain consistent generalization performance, even when small perturbations are introduced

to its inputs. Essentially, a model is considered robust if its loss does not increase significantly

under slight input modifications. For example, this means that ℓ(x, y;w) ≈ ℓ(x + δ, y;w), where δ

represents a small perturbation. This property is crucial for ensuring that the model performs well

in the presence of attacks. We will discuss this in more detail in the subsequent sections.

There are several factors that can influence the generalization and robustness of the learned

model. We discuss them below and relate them to relevant parts of this thesis where they are

further explored.

Optimization Objective: The choice of the loss function ℓ can depend on factors such as

the type of learning task. For regression problems where outputs are continuous, i.e., Y ∈ R,

the mean squared error, mean absolute error, or Huber loss are commonly used. For classification

problems where the true outputs are categorical, i.e., Y ∈ C = {1, 2, . . . , C} with C classes in

total, the cross-entropy loss is widely used. The optimization objective often consists of a loss

function with additional terms known as regularizers. Common regularizers, such as ℓ1 and ℓ2

regularization, encourage weights to have small magnitudes, often leading to improved generalization

and robustness. We will explore optimization, regularizations, and their effects on model robustness

in more detail in Section 2.4 and Chapter 3.

Model Architecture: The architecture of the model can vary significantly depending on its

intended purpose. For example, linear models are analysis-friendly and easy to interpret, making

them suitable for understanding the dynamics under different optimization objectives or parameter

update rules. Conversely, convolutional neural networks (CNNs) and more recent transformers are

favored in practice due to their ability to capture complex relationships within the data. Throughout

this thesis, we primarily focus on linear models for analytical purposes, while CNNs are the main

models used to demonstrate our experimental results. Chapter 5 introduces a novel neural network

architecture designed to improve robustness when the dataset exhibits specific structures.

Optimization Algorithm: The performance of a model can also be significantly influenced by

the choice of optimization algorithm, which depends on the properties of the dataset, the charac-

teristics of the optimization objective, and the availability of computational resources. GD updates

the parameters of the model in the direction of the negative gradient of the loss function. Its vari-

ant, SGD, updates parameters using a random subset of the training data, known as a mini-batch.

This can lead to faster convergence and is particularly useful when the dataset is large. Adaptive

optimization algorithms such as Adam (Kingma et al., 2015) and RMSprop (Hinton et al., 2012)

are also commonly used in practice. In Chapter 6, we formally present the update rule under those

algorithms and investigate how they can influence the robustness of the model.

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM 8

Adversarial Machine Learning: An Overview

In the beginning of Chapter 1, we described what attacks and defenses are from a very high level.

Below, we provide additional definitions commonly used in adversarial machine learning literature.

Adversarial examples are inputs intentionally designed to fool a machine learning model. We

focus on adversarial examples created by adding small perturbations to the original input data, re-

ferred to as adversarial perturbations. To study them, it is important to formalize and constrain

the power of the adversary. One key reason for introducing such constraints is that they provide a

mathematically precise way to define the adversary’s capabilities, making both theoretical analysis

and empirical evaluation more tractable. Specifically, we restrict the adversary to modify an input

x to x + δ where δ ∈ ∆ and ∆ denotes the constraint set. We focus on the commonly-used ϵ-balls

constraint with respect to (w.r.t.) the ℓp-norms: ∆ =
{
δ : ∥δ∥p ≤ ϵ

}
, and use Bp(x, ϵ) to denote

the ℓp-ball with radius ϵ centered around data point x. Note that other constraint sets have been

investigated too (Wong et al., 2019b).

Perturbations are usually input-specific, meaning that they are designed to cause misclassifi-

cation for a specific input. In contrast, universal adversarial perturbations are effective against

more than one input. Perturbations can also be non-targeted, where the model predicts any in-

correct label, or targeted, where the model predicts a specific incorrect label. In this thesis, we

mostly focus on input-specific non-targeted attacks, except in Chapter 5, where we investigate the

effects of targeted attacks.

Adversaries can be characterized using the information they can use and the actions they can

take to craft perturbations. When evaluating the security consequences of adversarial examples, the

term threat model is often used to define the capacity of the attackers (Papernot et al., 2016).

For instance, a white-box attack assumes complete knowledge of the target model, including its

parameters, architecture, and its training data. On the contrary, a black-box threat model refers

to the scenario where the attacker does not know anything about the model under attack. Although

the specifics of the model are unknown, adversaries can still interact with it by observing the outputs

for any given input. The black-box threat model will be the focus of Chapter 6, where we explore

the transferability of adversarial examples.

In the following sections, we discuss a selection of topics that are particularly helpful in under-

standing this thesis. While some of the works discussed might appear to be outdated, they are

included here because they provide the foundational concepts upon which many subsequent ad-

vancements have been built. For more recent studies and works closely related to the specific topics

covered in each chapter, we will review and discuss them in detail in the subsequent chapters.

2.2 Conjectures on the Existence of Adversarial Perturba-

tions

Goodfellow et al. (2015) hypothesized that the neural network’s vulnerability to adversarial pertur-

bations primarily comes from their linear nature. They demonstrated using a simple linear model

that infinitesimal changes made to a high-dimensional input can sum up to one large change to the

output, thereby creating an adversarial example. Despite their non-linear transformations, many

widely-used activation functions, such as ReLU and Sigmoid, possess linear attributes—ReLU’s lin-

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM 9

ear region and Sigmoid’s non-saturating region—which facilitate easier optimization. As such, the

authors advanced the conjecture that the existence of adversarial examples in DNNs is largely due

to these linear properties.

This hypothesis led to the development of the Fast Gradient Sign Method (FGSM), a technique

for generating adversarial perturbations constrained by the ℓ∞-norm:

δFGSM = arg max
∥δ∥∞≤ϵ

ℓ̃1st(x + δ) (2.1)

= arg max
∥δ∥∞≤ϵ

ℓ(x) +∇xℓ(x)⊤δ

= ϵ sign(∇xℓ(x)),

where the perturbation δFGSM is the solution to the constrained optimization problem by considering

the first-order Taylor approximation of the loss ℓ̃1st(x+δ) around the input. Note that we use∇xℓ(x)

to denote the gradient of the loss function w.r.t. the input x.

Earlier work by Szegedy et al. (2014) showed that the box-constrained L-BFGS method can reli-

ably generate adversarial examples, though it is a computationally intensive procedure that requires

optimization for each input individually. In contrast, FGSM offers a highly efficient alternative, as

(2.1) only involves computing a single-step gradient of the loss w.r.t. the input, which can be easily

parallelized across an entire batch of data.

Moreover, (2.1) can be easily adapted to generate perturbations under other ℓp-norm constraints.

For example, the ℓ2 variant of FGSM, which we refer to as the Fast Gradient Method (FGM), can

be formulated as:

δFGM = arg max
∥δ∥2≤ϵ

ℓ(x) +∇xℓ(x)⊤δ (2.2)

= ϵ
∇xℓ(x)

∥∇xℓ(x)∥2
.

FGSM was simple but very effective. The authors showed that a small maxout network (Good-

fellow et al., 2013) misclassifies 87% of the FGSM-perturbed test set data with ϵ = 0.1 on MNIST.

Empirical evidence supporting the linear hypothesis was further discussed in Tramèr et al. (2017).

Other hypotheses for the existence of neural network’s vulnerability to adversarial examples have also

been explored extensively. Song et al. (2018), Lee et al. (2017), and Stutz et al. (2019) suggested that

adversarial examples lie off the data manifold and are sampled from a different distribution than

the unperturbed dataset. Such a hypothesis has led to the development of adversarial detection

methods (Grosse et al., 2017; Gong et al., 2017). Conversely, Gilmer et al. (2018) refuted the

hypothesis that adversarial examples are primarily caused by a distribution shift. Using a synthetic

dataset with concentric hyperspheres, they demonstrated that adversarial examples can still be found

as long as the learned model has a non-zero error rate, even when the adversarial search space is

restricted to the data manifold. Additional hypotheses, such as the trade-off between robustness

and accuracy (Tsipras et al., 2018; Raghunathan et al., 2020) and relation to decision boundaries

(Moosavi-Dezfooli et al., 2017), have also also investigated.

More advanced attack algorithms have since been developed, with FGSM often serving as a

building block. In particular, the majority of these algorithms are multi-step variants of FGSM that

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM10

iteratively apply FGSM with a small step size to generate adversarial perturbations. In the next

section, we discuss other techniques for generating adversarial perturbations.

2.3 Generating Adversarial Perturbations

One general approach to generating adversarial perturbation is to solve an optimization problem

that maximizes the loss function subject to a constraint on the perturbation:

δ∗ = arg max
∥δ∥p≤ϵ

ℓ(x + δ), (2.3)

where the constraint is typically defined in terms of some ℓp-norm. For example, δFGSM is a spe-

cial case of this where the maximizer can be found in closed form due to the first-order Taylor

approximation of the loss.

To improve the vanilla FGSM, a straightforward extension is to apply multiple iterations of

it with a small step size. This iterative approach is known as the Basic Iterative Method (BIM)

(Kurakin et al., 2016). Starting with the initial data point x′
0 = x, BIM updates as follows:

gt+1 = ∇xℓ(x
′
t),

x′
t+1 = ΠB∞(x,ϵ) {x′

t + α sign (∇xℓ(x
′
n))} ,

(2.4)

where gt+1 is the input gradient and α denotes the step size at each iteration. The projection

operator ΠB∞(x,ϵ) ensures that the perturbation is within the constrain. Note that one-iteration

BIM with α = ϵ is equivalent to FGSM.

Madry et al. (2018) further improves this approach by introducing a uniformly random initial-

ization of the perturbation within the ℓ∞-ball before the iterative process. The initialization step is

given by:

x′
0 = ΠB∞(x,ϵ){x + ϵδ}, (2.5)

where each dimension of δ is independently sampled from a uniform distribution U(−1, 1). This

method, known as Projected Gradient Descent (PGD), has been shown by the authors to reliably

generate strong adversarial perturbations. Several algorithms have been developed using PGD as a

foundation, including those discussed in Chapter 5 and in Croce et al. (2020). In BIM and PGD, the

number of iterations is a hyperparameter that requires tuning. Madry et al. (2018) demonstrates on

CIFAR-10 that the adversarial loss ℓ(x′
t) plateaus after a small number of iterations, opting to use

20 iterations in their evaluations. Consequently, subsequent works, including the evaluations in this

thesis, have adopted 20 iterations as a standard setting for PGD.

To find better maximizers of (2.3), more advanced methods borrow techniques initially proposed

for optimizing neural networks. Techniques such as momentum, adaptive updates, and variance

reduction are successively integrated to create more effective perturbations (Dong et al., 2018; Zou

et al., 2020; Wang et al., 2021c; Xiong et al., 2022).

Unlike FGSM and PGD which are formulated as constrained optimization problems, Carlini

et al. (2017) formulates the attack using an unconstrained optimization problem. Denote a neural

networks as: f(x) = softmax(Z(x)), where Z(·) is the pre-softmax logit, and we use Zi(x) to denote

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM11

the logit of to the i-th class. They proposed the Carlini-Wagner (CW) attack:

min
δ
∥δ∥p + c · g(x + δ), (2.6)

where g(x′) = max {maxj ̸=t {Zj(x
′)} − Zt(x

′), 0}, t is the targeted class for misclassification. When

maxj ̸=t {Zj (x′)} − Zt (x′) ≤ 0, this means the model’s most confident output is class t and the

optimization is then simplified to min ∥δ∥p, which has a trivial solution: δ = 0. On the other hand,

when it is larger than 0, we penalize the difference of pre-softmax logits between the targeted class

and the class with the second highest value.

To ensure that the perturbed input still remains within the valid input space for images, we need

to guarantee that x + δ ∈ [0, 1]d. The authors achieved this by introducing a change of variable, w,

and defining δi = 1
2 (tanh (wi) + 1) − xi. Since −1 ≤ tanh (wi) ≤ 1, the solution will automatically

be within the constraints.

Because the optimization in (2.6) is unconstrained, this requires verifying norm of the pertur-

bation. Additional techniques were discussed in the paper which allow us to generate CW attacks

using different norms.

The PGD and CW attacks are two of the most widely used algorithms for generating adversarial

perturbations. The CW attack is primarily used to evaluate the robustness of models, while the

PGD attack is often utilized to generate adversarial examples for improving model robustness. This

topic will be explored further in the next section. Additionally, more recent robustness evaluation

toolboxes, such as AutoAttack (Croce et al., 2020), have incorporated these attacks as part of their

evaluation suites. In this thesis, we focus on PGD and AutoAttack to evaluate the robustness of our

models.

2.4 The Robust Optimization Framework

In addition to developing the PGD attack, Madry et al. (2018) explored the robust optimization

framework for improving model robustness of neural networks. The ERM process has excelled in

finding solutions with low empirical risk, but it only focuses on reducing the average-case loss on the

training set, neglecting the worst-case loss caused by adversarial perturbations. To address this, the

authors proposed a shift from the conventional ERM paradigm to one that incorporates robustness

directly into the model. This goal was formulated as a robust optimization problem where the

objective is to minimize the adversarial population risk given some perturbation constraint ∆:

min
w

E(X,Y)∼D
[

max
δ∈∆

ℓ(X + δ, Y ;w)
]
, (2.7)

where we have an interplay between two goals: the inner-max term looks for the worst-case loss

around each input, and the outer-min term aims to optimize model parameters to minimize this

loss.

Equation (2.7) represents a saddle point problem involving two variables, δ and w. For each

data point (X,Y), the goal is to find a pair of (δ∗, w∗) such that the equation satisfies both the

maximization condition w.r.t. δ and the minimization condition w.r.t. w. To solve this, Madry et

al. (2018) proposed using alternating GD, which updates the variables in the inner-max and outer-

min terms in an alternating manner using gradient ascent and descent. The proposed PGD attack

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM12

was then used to approximately solve the inner-max problem for an ℓ∞-norm bounded perturbation.

For the outer-min problem, the authors proposed training with PGD-perturbed training data.

They justified this approach using Danskin’s theorem, which states that descent direction at the

inner maximizer corresponds to the descent direction for the entire saddle point problem.

However, this theorem assumes that the function is continuously differentiable, a condition not

always met in neural networks due to elements like ReLU and max-pooling. Moreover, the PGD

perturbation was only an approximation to the inner-max solution. Nevertheless, training with PGD

perturbations has become a widely-used method for improving model robustness and remains one

of the state-of-the-art (SOTA) defense techniques.

Adversarial training using perturbed training data has been studied extensively by Szegedy et al.

(2014), Goodfellow et al. (2015), Kurakin et al. (2016), Madry et al. (2018), and Wong et al. (2019a).

These methods primarily differ in how perturbations are generated: L-BFGS (Szegedy et al., 2014),

FGSM (Goodfellow et al., 2015), BIM (Kurakin et al., 2016), PGD (Madry et al., 2018) and FGSM

with random initialization (Wong et al., 2019a). Under the robust optimization framework, training

with adversarial perturbations is seen as an approximation of the min-max problem described in

(2.7), through different solutions to the inner-max problem.

Generating PGD perturbations, particularly in the inner loop, is computationally expensive,

which notably limits the scalability of PGD adversarial training to large datasets. There are several

other attempts to use the min-max objective for robustifying DNNs (Huang et al., 2015; Wong

et al., 2018; Shaham et al., 2018). Notably, Wong et al. (2018) proposed adversarial training using

randomly initialized FGSM perturbations (i.e., one-step PGD), demonstrating that such models can

achieve robustness comparable to PGD-based training but at a significantly reduced computational

cost. However, FGSM with random initialization presents a considerably weaker adversary and a

less accurate approximation to the inner-max problem, therefore, quantifying the degree to which

the inner maximization must be solved in order to perform robust optimization is still an open

research area.

Although the robust optimization framework provides an initial step toward a theoretically sound

approach for robustifying neural networks, other robustification techniques exist outside this frame-

work. For instance, more recent methods leverage curriculum-based (Cai et al., 2018; Sarkar et al.,

2021), ensemble-based (Yang et al., 2020; Wang et al., 2022b; Deng et al., 2024), and contrastive

learning approaches (Jiang et al., 2020; Kim et al., 2020; Xu et al., 2024).

Bishop (1995) demonstrated that augmenting the training data with Gaussian noise is equivalent

to training with ℓ2 regularization, a connection we explore in details in Section 3.2. In Chapter 3, we

introduce a regularization method which mimics the adversarial training process. Instead of finding

the maximizers of the inner loop in (2.7) and substituting the original inputs with these maximizers,

we train models directly with a regularizer. The regularized loss upper bounds the worst-case effects

of an adversary.

2.5 The Robustness-Accuracy Trade-off

An interesting observation noted across several adversarial training methods is the undesirable trade-

off between accuracy on adversarially perturbed inputs and that on unperturbed inputs (Madry et

al., 2018; Tsipras et al., 2018; Zhang et al., 2019; Rade et al., 2022; Li et al., 2023). Raghunathan et

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM13

al. (2020) analyzed the effect of data augmentation in the linear regression setting where the optimal

linear model has a perfect accuracy on both unperturbed and perturbed data. They considered two

minimum norm estimators:

ŵstd = arg minw {∥w∥2 : ystd = Xstdw}
ŵaug = arg minw {∥w∥2 : ystd = Xstdw, yext = Xextw}

, (2.8)

where the augmented data Xext are generated by adding noise to the standard data Xstd.

For linear regression, the authors considered a squared loss: ℓ(w) = (w − w⋆)
⊤

Σ (w − w⋆), where

Σ = E
[
XX⊤] is the data covariance. They showed that the difference in the loss of the standard

estimator and the augmented estimator, ℓ(ŵstd) − ℓ(ŵaug), hinges on the eigenvalues of Σ. This

analysis identified conditions of Σ under which the standard error does not increase when fitting

augmented data, thereby leading to methods that minimize the trade-off between standard and

robust accuracy.

Using those insights, the authors demonstrated that the robust self-training (RST) procedure

proposed by Uesato et al. (2019) and Carmon et al. (2019) satisfies the conditions in linear regression

setting. Although RST does not completely resolve the trade-off on neural networks, they showed

that it significantly minimizes the trade-off compared to other SOTA defense methods.

Several works have attempted to explain the tension between the goal of adversarial robustness

and that of standard generalization. Tsipras et al. (2018) argues that this trade-off is a consequence of

robust classifiers learning fundamentally different feature representations than standard classifiers,

conjecturing that no classifier is both accurate and robust. Similarly, Zhang et al. (2019) also

showed that the trade-off is inevitable and proposed TRADES regularization, which includes a

tunable hyperparameter to balance the trade-off between robustness and accuracy. Along with

PGD adversarial training, TRADES-regularized models are also included as our baselines in the

experiments in Chapters 3 and 5. The objective can be formulated as:

min
w

E(X,Y)∼D

[
ℓ(X,Y ;w) +

1

λ
·max
δ∈∆

KL(f(X + δ)||f(X))

]
,

where f(·) is the probability of classes and λ governs the trade-off between clean accuracy and

adversarial robustness. Throughout this thesis, we consistently observe a trade-off between standard

and robust accuracy across all datasets and models tested.

2.6 The Transferability of Adversarial Perturbations

Attacking the target model using algorithms such as PGD and CW requires knowing the model’s

architecture and weights, a scenario known as the white-box threat model. This assumes that the

adversary has an exact replica of the target model, a strong assumption that is rarely met in practice.

However, this does not imply that models are secure from attacks. A unique property of adversarial

examples is their transferability, where perturbations generated for one model can often deceive

another, even across different architectures (Goodfellow et al., 2015).

Motivated by this phenomenon, researchers have proposed generating adversarial examples using

a surrogate model and then transferring them to the target model, leading to the development of the

black-box attack framework (Papernot et al., 2017). In this framework, a substitute model is trained

CHAPTER 2. ADVERSARIAL PERTURBATIONS: WHERE TO FIND THEM AND HOW TO AVOID THEM14

to approximate the decision boundary of the target model by querying its outputs. Adversarial

examples are then generated using this surrogate and transferred to the target.

Under this framework, the goal is to limit the number of queries required to learn the substitute

model. This led to a heuristic for generating synthetic training set called Jacobian-based Dataset

Augmentation. By examining the substitute model’s Jacobian matrix at a given input, it reveals

directions in which the substitute model’s output is varying, and thus requires more input-output

pairs to more accurately approximate the decision boundary of the target model. The effectiveness

of this technique was demonstrated against online ML classifiers hosted by companies like Amazon

and Google, achieving misclassification rates of 96.19% and 88.9%, respectively.

When robustifying models, many defenses only reach an illusion of robustness through methods

collectively known as gradient masking (Athalye et al., 2018), which describes the scenario that

gradient-based attacks are unable to generate perturbation due to insufficient gradient information.

These methods often fail against transferred attacks, such as those proposed by Papernot et al.

(2017). Note that with unlimited queries, a substitute model could replicate the target model. This

leads to ongoing research aimed at improving the efficiency of query strategies (Cheng et al., 2019;

Guo et al., 2019).

What makes adversarial examples transferable? Various hypotheses have been proposed, with

one popular theory suggesting that the transferability is due to the similar geometric structures in

the loss landscapes of different models (Fawzi et al., 2017; Charles et al., 2019; Zhao et al., 2020;

Liu et al., 2016). For instance, Liu et al. (2016) showed that different models often share similar

decision boundaries, enabling adversarial examples to transfer between them.

In Chapter 6, we begin by presenting a taxonomy of various transferability-enhancing methods.

We then introduce a fine-tuning technique to transform any source model into one from which

attacks generate more transferable adversarial perturbations. We also leverage a geometric analysis

to understand the effect of the proposed transferability improvement technique.

Chapter 3

Regularized Training for

Improving Adversarial Robustness

3.1 Introduction

The intuition behind adversarial training is that by adding sufficiently enough adversarial examples,

the network gradually becomes robust to the attack it was trained on (Section 2.4). However, a

significant challenge with this approach is the tremendous amount of additional data required for

learning a robust model. Schmidt et al. (2018) demonstrated that, under the assumption of a

Gaussian data distribution, the sample complexity for achieving robust generalization is
√
d times

greater than that for standard generalization, where d represents the input dimension. This implies

that that current datasets may be insufficient for attaining high adversarial accuracy. In this work, as

an alternative to data augmentation, we propose to robustify the model by introducing a regularizer

that specifically penalizes model parameters vulnerable to attacks. By minimizing the regularized

loss function, we get models that are robust to adversarial examples. This method offers a more

direct and more efficient way to improve model robustness compared to traditional adversarial

training methods.

Both adversarial training and our proposed approach can be formulated under the robust op-

timization framework (Section 2.4). In this formulation, one is seeking to improve the worst-case

performance of the model measured by a loss function ℓ. Given each training data, adversarial

training first generates a perturbation using a specific attack technique and then updates the model

parameters based on the loss evaluated at the perturbed data point. Our proposed method, on the

other hand, eliminates the need for finding such perturbations. It is based on approximating the

loss at the perturbed data point x + δ using its second-order Taylor series expansion, i.e.,

ℓ(x + δ) ≈ ℓ(x) +∇xℓ(x)⊤δ +
1

2
δ⊤∇2

xℓ(x)δ,

and then upper bounding the worst-case loss using these expansion terms. By considering both

gradient and Hessian of the loss function w.r.t. the input, we directly identify the model parameters

that could be exploited by an adversary and regularize them during the training process. We call

This chapter is based on our work in SOAR: Second-Order Adversarial Regularization.

15

https://arxiv.org/pdf/2004.01832

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 16

the method Second-Order Adversarial Regularizer (SOAR).

3.1.1 Contributions

In this chapter, we first introduce an example with linear models to motivate the development of our

method in Section 3.2. The derivation of SOAR and a discussion of related regularization approaches

are included in Section 3.3. The experiment results are included in Section 3.4. In the course of the

development of SOAR, we make the following contributions:

• We show that an over-parameterized linear regression model can be severely affected by an

adversary, even though its population loss is zero. We robustify it with a regularizer that

exactly mimics the adversarial training. This suggests that regularization can be used instead

of adversarial training (Section 3.2).

• Inspired by such a possibility, we develop a regularizer which upper bounds the worst-case

effect of an adversary under an approximation of the loss. In particular, we derive SOAR,

which approximates the inner maximization of the robust optimization formulation based on

the second-order Taylor series expansion of the loss function (Section 3.3).

• We study SOAR in the logistic regression setting and reveal challenges with regularization

using Hessian w.r.t. the input. We develop a simple initialization method to circumvent the

issue (Section 3.3.4).

• We empirically show that SOAR significantly improves the adversarial robustness of the net-

work against ℓ∞ attacks and ℓ2 attacks generated based on PGD (Madry et al., 2018) on

CIFAR-10 (Section 3.4).

• We further investigate SOAR under state-of-the-art method AutoAttack (Croce et al., 2020)

and analyze the drop in robustness against it. We also discuss several hypotheses regarding

this decrease in robustness (Section 3.4.2).

3.2 Understanding Adversarial Training Using Linear Re-

gression with an Over-parametrized Model

We start with a linear model example to motivate the development of our regularizer. We show

that for over-parameterized linear models, gradient descent (GD) finds a solution that has zero

population loss, but is prone to attacks. We then show that this problem can be avoided with an

appropriate regularizer. Hence, we do not need adversarial training to robustify such a model. This

simple illustration motivates the development of our method in next sections.

Consider a linear model fw(x) = ⟨w , x ⟩ with x,w ∈ Rd. Suppose that w∗ represents the true

model that is used to generate the target: y = x⊤w∗, where w∗ = (1, 0, . . . , 0)⊤. The distribution

of x ∼ p is confined to a 1-dimensional subspace, { (x1, 0, 0, . . . , 0) : x1 ∈ R }. So the density of x is

p ((x1, . . . , xd)) = p1(x1)δ(x2)δ(x3) . . . δ(xd), where δ(·) is Dirac’s delta function. This setup can be

thought of as using an over-parameterized model that has many irrelevant dimensions with data that

is only covering the relevant dimension of the input space. This is a simplified model of the situation

when the data manifold has a dimension lower than the input space. We consider the squared error

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 17

pointwise loss ℓ(x;w) = 1
2 |⟨x , w ⟩ − ⟨x , w

∗ ⟩|2. Denote the residual by r(x;w) = ⟨x , w − w∗ ⟩, and

the population loss by L(w) = E [ℓ(X;w)].

Suppose that we initialize the weights as w(0) = W ∼ N(0, σ2Id×d), and use GD on the popu-

lation loss, i.e., w(t + 1)← w(t)− η∇wL(w).

The partial derivatives of the population loss are

∂L(w)

∂wj
=

∫
⟨x , w − w∗ ⟩ p(x)dx = (wj − w∗

j)E [Xj].

Notice that the gradient in dimension j = 1 is non-zero, unless (w1 − w∗
1)E [X1] = 0. Assuming

that E [X1] ̸= 0, this implies that the gradient will not be zero unless w1 = w∗
1 . On the other hand,

the gradients in dimensions j = 2, . . . , d are all zero, so GD does not change the value of wj(t) for

j = 2, . . . , d. Therefore, under the proper choice of learning rate η, we get that the asymptotic

solution of GD solution is w̄ ≜ limt→∞ w(t) = (w∗
1 , w2(0), w3(0), . . . , wd(0))⊤.

We make two observations. The first is that L(w̄) = 0, i.e., the population loss is zero. So from

the perspective of training under the original loss, we are finding the optimal solution. The second ob-

servation is that we can easily attack this model by perturbing x by ∆x = (0,∆x2,∆x3, . . . ,∆xd)⊤.

The loss at x + ∆x is

ℓ(x + ∆x;w) =
1

2
|(w1 − w∗

1)x1 + ⟨w , ∆x ⟩|2 =
1

2
|r(x;w) + ⟨w , ∆x ⟩|2 .

With the choice of ∆xi = ϵ sign(wi(0)) (for i = 2, . . . , d) and ∆x1 = 0, an FGSM-like attack

(Goodfellow et al., 2015) at w̄ leads to the pointwise loss of

ℓ(x + ∆x; w̄) =
1

2
ϵ2
[d∑

j=2

|wj(0)|
]2
≈ 1

2
ϵ2 ∥w(0)∥21 , (3.1)

when d≫ 1.

Now, to get a better sense of this loss, we compute its expected value w.r.t. the randomness of

weight initialization. We have that (including the extra |w1(0)| term too)

EW∼N(0,σ2Id×d)

[
∥W∥21

]
= E

 d∑
i,j=1

|Wi||Wj |

 =

d∑
i=1

E
[
|Wi|2

]
+

d∑
i,j=1,i̸=j

E [|Wi|]E [|Wj |] ,

where we used the independence of the random variable Wi and Wj when i ̸= j. The expectation

E
[
|Wi|2

]
is the variance σ2 of Wi. The random variable |Wj | has a folded normal distribution, and

its expectation E [|Wj |] is
√

2
πσ. Thus, we get that

EW∼N(0,σ2Id×1)

[
∥W∥21

]
= dσ2 + d(d− 1)

2

π
σ2 ≈ 2

π
d2σ2,

for d≫ 1. The expected population loss of the specified attack ∆x at the asymptotic solution w̄ is

EX,W [ℓ(X + ∆x); w̄)] ≈ O(ϵ2d2σ2).

The dependence of this loss on dimension d is significant, showing that the learned model is quite

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 18

vulnerable to attacks. We note that the conclusions would not change much with initial distributions

other than the Normal distribution. The culprit is obviously that GD is not forcing the initial weights

to go to zero when there is no data from irrelevant and unused dimensions. This simple problem

illustrates how the optimizer and an over-parameterized model might interact and lead to a solution

that is prone to attacks.

An effective solution is to regularize the loss to encourage the weights of irrelevant dimensions

going to zero. A generic regularizer is to use the ℓ2-norm of the weights, i.e., formulate the problem

as a ridge regression. In that case, the regularized population loss is

Lridge(w) =
1

2
E
[
|⟨X , w ⟩ − ⟨X , w∗ ⟩|2

]
+

λ

2
∥w∥22 .

The solution of ∇wLridge(w) = 0 is

w̄j(λ) =


µ1

µ1+λw
∗
1 j = 1

0 j ̸= 1.

The use of this generic regularizer seems reasonable in this example, as it enforces the weights

for dimensions 2 to d to become zero. Its only drawback is that it leads to a biased estimate of

w∗
1 . We can obtain a similar conclusion for the ℓ1 regularizer (Lasso). Although the bias can be

made small with a small choice for λ, this comes at the cost of extended training time. Rather

than relying on generic regularizers, can we define a regularizer specifically designed to improve

adversarial robustness?

Bishop (1995) showed the connection between training with random perturbation and Tikhonov

Regularization. Inspired by this idea, we develop a regularizer that mimics the adversary itself. Let

us assume that a particular adversary attacks the model by adding ∆x = (0, ϵ sign(w2(0)), . . . , ϵ sign(wd(0))⊤.

The population loss at the perturbed point is

Lrobustified(w) ≜ E [ℓ(X + ∆x;w)] =
1

2
E


∣∣∣∣∣∣r(x;w) + ϵ

d∑
j=2

|wj |

∣∣∣∣∣∣
2
 (3.2)

= L(w) + ϵE [r(X;w)] ∥w2:d∥1 +
ϵ2

2
∥w2:d∥21 ,

where ∥w2:d∥1 =
∑d

j=2 |wj |.1

It is important to understand the relation between (3.1) and (3.2). While (3.1) shows the loss

under attack for the asymptotic solution, (3.2) shows the loss for any w. By choosing w = w̄, the

first two terms in (3.2) become zero and we are left with the same term as in (3.1).

Note that minimizing Lrobustified(w) is equivalent to minimizing the model at the point x′ =

x + ∆x, where ∆x = (0, ϵ sign(w2(0)), . . . , ϵ sign(wd(0))⊤. The regularizer ϵE [r(X;w)] ∥w2:d∥1 +
ϵ2

2 ∥w2:d∥21 incorporates the effect of adversary in exact form. This motivated the possibility of

designing a regularizer tailored to prevent attacks.

Under the robust optimization framework, regularization and adversarial training are two realiza-

tions of the inner-max objective in (2.7), but regularization relieved us from finding the perturbation,

1A similar, but more complicated result, would hold if the adversary could also attack the first dimension.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 19

as is done in adversarial training. In this section, because of the linear model and the squared error

loss, we could design a regularizer that exactly mimics the effect of the adversary. How can we design

a regularizer for more complicated models, such as DNNs? We address this in the next section.

3.3 Adversarial Regularization: An Alternative to Adversar-

ial Training

The main idea of the proposed regularization approach is to approximate the loss function using

the Taylor series expansion and then solve the inner maximization term of the robust optimization

formulation (2.7) using the approximated form. In this section, we first derive a regularizer using

the first-order Taylor series expansion, which we refer to as the First-Order Adversarial Regularizer

(FOAR). Following that, we derive SOAR using the second-order Taylor series expansion. We then

discuss the challenges of using the second-order derivative of the loss w.r.t. the input, known as the

input Hessian, in logistic regression and propose a simple initialization method to address the issue.

3.3.1 First-Order Adversarial Regularization

Assuming that the loss is twice-differentiable, we can approximate the loss function around input x

by its second-order Taylor expansion

ℓ(x + δ, y;w) ≈ ℓ̃2nd(x + δ, y;w) ≜ ℓ(x, y;w) +∇xℓ(x, y;w)⊤δ +
1

2
δ⊤∇2

xℓ(x, y;w)δ, (3.3)

where ∇xℓ(x, y;w) ∈ Rd and ∇2
xℓ(x, y;w) ∈ Rd×d are the gradient and Hessian of the loss w.r.t. the

input x, respectively.

From a geometric perspective, the gradient term captures the slope of the loss function at x, while

the Hessian term represents the curvature at x. Together, they provide a second-order approximation

of the loss function around x. Although the gradient is straightforward to compute, computing the

input Hessian is computationally expensive for high-dimensional inputs. To address this, we can

approximate the Hessian using Hessian-free techniques such as the Hessian-vector product. We will

discuss this in more detail in the following section.

For brevity, we drop w, y and use ∇ to denote ∇x. Let us focus on the ℓp attacks, where the

constraint set in (2.7) is ∆ = {δ : ∥δ∥p ≤ ϵ} for some ϵ > 0 and p ≥ 1. We focus on the ℓ∞ attack

because of its popularity, but we also derive the formulation for the ℓ2 attacks.

As a warm-up, let us solve the inner maximization of (2.7) by considering the first-order Taylor

series expansion. We have

ℓFOAR(x) ≜ max
∥δ∥p≤ϵ

ℓ(x) +∇ℓ(x)⊤δ = ℓ(x) + ϵ ∥∇ℓ(x)∥q , (3.4)

for 1 ≤ p ≤ ∞ and q satisfying p−1 + q−1 = 1. Focusing on the ℓ∞ attack, we have p = ∞ and

q = 1, so the FOAR is ϵ ∥∇ℓ(x)∥1. This regularizer is similar to the one proposed by Simon-Gabriel

et al. (2019) with the choice of ℓ∞ perturbation set.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 20

3.3.2 Second-Order Adversarial Regularization

In our work, we take one-step further and solve the inner maximization problem based on the

second-order Taylor expansion:

max
∥δ∥p≤ϵ

ℓ(x) +∇ℓ(x)⊤δ +
1

2
δ⊤∇2ℓ(x)δ, (3.5)

for p = 2,∞. The second-order expansion in (3.3) can be rewritten as

ℓ(x + δ) ≈ ℓ(x) +
1

2

δ
1

⊤ ∇2ℓ(x) ∇ℓ(x)

∇ℓ(x)⊤ 1

δ
1

− 1

2
(3.6)

= ℓ(x) +
1

2
δ′⊤Hδ′ − 1

2
,

where δ′ = [δ; 1]. This allows us to derive an upper bound on the expansion terms using the properties

of a single Hessian H. Note that δ′ is a d+ 1-dimensional vector and H is a (d+ 1)× (d+ 1) matrix.

To derive SOAR, we need to find an upper bound on δ′⊤Hδ′ under the attack constraint.

For the ℓ∞ attack, solving this maximizing problem is not as easy as in (3.4) since the box-

constrained quadratic programming problem in formulation (3.5) is NP-hard when the input Hessian

is non-convex (Burer et al., 2009), which is typically the case in neural networks. Even though there

exist semi-definite programming (SDP) relaxations, such approaches require the exact Hessian w.r.t.

the input. And even if we could compute the exact Hessian, SDP itself is a computationally expensive

approach, and not suitable to be within the inner loop of a DNN training.

Our goal is to derive a second-order regularizer for perturbations constrained by the ℓ∞ norm,

i.e., ∥δ∥∞ ≤ ϵ. To achieve this, we first consider (3.5) under the constraint ∥δ∥2 ≤
√
dϵ and then

relate it to ∥δ∥∞ ≤ ϵ. As we see later, this approach leads to a computationally efficient solution.

Proposition 3.3.1. Let ℓ : Rd → R be a twice-differentiable function. For any ϵ > 0, we have

max
∥δ∥2≤

√
dϵ
ℓ̃2nd(x + δ) ≤ ℓ(x) +

dϵ2 + 1

2
E [∥Hz∥2]− 1

2
, (3.7)

where H is defined in (3.6) and z ∼ N (0, I(d+1)×(d+1)).

Proof.

max
∥δ∥2≤

√
dϵ
ℓ̃2nd(x + δ) = max

∥δ∥2≤
√
dϵ
ℓ(x) +

1

2

δ
1

⊤ ∇2ℓ(x) ∇ℓ(x)

∇ℓ(x)⊤ 1

δ
1

− 1

2

= ℓ(x) +
1

2
max

∥δ∥2≤
√
dϵ

δ
1

⊤

H

δ
1

− 1

2

≤ ℓ(x) +
1

2
max

∥δ′∥2≤
√
dϵ2+1

δ′⊤Hδ′ − 1

2
.

To upper bound max∥δ′∥2≤
√
dϵ2+1 δ

′⊤Hδ′, we first denote ϵ′ =
√
dϵ2 + 1 and use the Cauchy-

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 21

Schwarz inequality to obtain

max
∥δ′∥2≤ϵ′

δ′⊤Hδ′ ≤ max
∥δ′∥2≤ϵ′

∣∣δ′⊤Hδ′
∣∣ ≤ max

∥δ′∥2≤ϵ′
∥δ′∥2 ∥Hδ′∥2 = ϵ′ max

∥δ′∥2≤ϵ′
∥Hδ′∥2 = ϵ′2 ∥H∥2 ,

where the last equality is obtained using definitions of the ℓ2-induced matrix norm, commonly

referred to as the spectral norm. Since computing ∥H∥2 would again require the exact input Hessian,

which we want to avoid, so we further upper bound the spectral norm by the Frobenius norm as

∥H∥2 = σmax(H) ≤ ∥H∥F .

The Frobenius norm itself satisfies

∥H∥F =
√

Tr(H⊤H) = E [∥Hz∥2] , (3.8)

where z ∼ N (0, I(d+1)×(d+1)). To understand the last equality in (3.8), first note that:

∥Hz∥22 = (Hz)⊤(Hz) = z⊤H⊤Hz.

Taking the expectation of both sides, we have:

E
[
∥Hz∥22

]
= E

[
z⊤H⊤Hz

]
= Tr(H⊤H),

where the last equality is obtained using E
[
z⊤Az

]
= Tr(A) for any square matrix A and a standard

Gaussian vector z.

Therefore, we can estimate ∥H∥F by sampling random vectors z and compute the sample average

of ∥Hz∥2.

Using Proposition 3.3.1, we obtain an upper bound on the worst-case second-order approximated

loss under an ℓ2 perturbation of size
√
dϵ. The next corollary follows directly from this proposition.

Corollary 3.3.2. Let ℓ : Rd → R be a twice-differentiable function. For any ϵ > 0, we have

max
∥δ∥∞≤ϵ

ℓ̃2nd(x + δ) ≤ ℓ(x) +
dϵ2 + 1

2
E [∥Hz∥2]− 1

2
, (3.9)

where H is defined in (3.6) and z ∼ N (0, I(d+1)×(d+1)).

Proof. With δ ∈ Rd, an ℓ∞-ball of size ϵ is enclosed by an ℓ2-ball of size
√
dϵ with the same center.

Therefore, we can upper bound the inner maximization by

max
∥δ∥∞≤ϵ

ℓ̃2nd(x + δ) ≤ max
∥δ∥2≤

√
dϵ
ℓ̃2nd(x + δ) ≤ ℓ(x) +

dϵ2 + 1

2
E [∥Hz∥2]− 1

2
, (3.10)

where the last inequality follows from Proposition 3.3.1.

The result in Corollary 3.3.2 upper bounds the maximum of the second-order approximation ℓ̃2nd

over an ℓ∞ ball with radius ϵ, and relates it to an expectation of a Hessian-vector product. This can

be understood as an upper bound on the worst-case damage of an adversary under a second-order

approximation of the loss.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 22

Let us take a closer look at Hz. By decomposing z = [zd, z1]
⊤

, we get

Hz =

∇2ℓ(x)zd + z1∇ℓ(x)

∇ℓ(x)⊤zd + z1

 .

Now, we have circumvented the computationally intensive process of computing the input Hessian

matrix ∇2ℓ(x), as the term ∇2ℓ(x)zd can be computed efficiently using Finite Difference (FD)

approximation:

∇2ℓ(x)zd ≈ ∥zd∥2
∇ℓ(x + hz̃d)−∇ℓ(x)

h
. (3.11)

Note that E [∥zd∥2] =
√
d for normally distributed z, and to ensure consistence between the step

size in the numerator and denominator, we normalize zd by using z̃d = zd
∥zd∥2

.

To summarize, the SOAR regularizer, formulated to improve robustness against perturbations

of size ϵ constrained by the ℓ∞ norm, evaluated at x, with a direction z, and FD step size h > 0 is

R(x; z, h, ϵ) =
dϵ2 + 1

2

∥∥∥∥∥∥
∥zd∥2 ∇ℓ(x+hz̃d)−∇ℓ(x)

h + z1∇ℓ(x)

∇ℓ(x)⊤zd + z1

∥∥∥∥∥∥
2

. (3.12)

The expectation in (3.9) can then be approximated by taking multiple samples of z drawn from

z ∼ N (0, I(d+1)×(d+1)). These samples would be concentrated around its expectation. Note that

P {∥Hz∥ − E [∥Hz∥] > t} ≤ 2 exp(− ct2

∥H∥2
), where c is a constant and ∥H∥2 is the ℓ2-induced norm

(see Theorem 6.3.2 of Vershynin (2018)). In practice, we observed that taking more than one sample

of z do not provide significant improvement for increasing adversarial robustness; we include an

empirical study on the the effect of sample sizes in Appendix 3.B.

3.3.3 Revisiting the Linear Regression Example

Before we discuss the remaining details, let us revisit the linear regression example from Section 3.2.

Recall that we fully robustify the model with an appropriate regularizer in (3.2). To further motivate

a second-order approach such as SOAR, we demonstrate below that we can obtain the first two

terms in (3.2) with a first-order regularizer, and we recover the exact form with a second-order

formulation. This means that a second-order regularizer captures the exact effect of training with

adversarial examples.

To demonstrate this, we first compute the gradient of the loss w.r.t. the input

∇ℓ(x;w) = (⟨w , ∆x ⟩ − ⟨w∗ , ∆x ⟩)(w − w∗) = r(x;w)(w − w∗),

and the Hessian w.r.t. the input

∇2ℓ(x;w) = (w − w∗)(w − w∗)⊤.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 23

To approximate (3.2) using its first-order expansion, we have

E
[
ℓ(X;w) +∇ℓ(X;w)⊤∆x

]
= L(w) + E

[
r(X;w)(w − w∗)⊤∆x

]
= L(w) + E

[
r(X;w)w⊤∆x

]
= L(w) + ϵE [r(X;w)] ∥w2:d∥1 ,

where w∗⊤∆x = 0 because of our particular choice of ∆x and w∗, and we obtain the first two terms

in (3.2). Note that the perturbation ∆x generally depends on the input x. However, under our

definition, ∆x = (0, ϵ sign(w2(0)), . . . , ϵ sign(wd(0))⊤ is fixed, as we disregard the contribution from

the first dimension.

The second-order approximation is

E
[
l(X;w) +∇xl(X;w)⊤∆x +

1

2
∆x⊤∇2

xl(x;w)∆x

]
=L(w) + ϵE [r(X;w)] ∥w2:d∥1 +

1

2
∆x⊤(w − w∗)(w − w∗)⊤∆x

=L(w) + ϵE [r(X;w)] ∥w2:d∥1 +
ϵ2

2
∥w2:d∥21 ,

which recovers the exact form in (3.2).

Next, we study SOAR in the simple logistic regression setting, which shows potential failure of

the regularizer. Based on the insight, we provide the remaining details of the method.

3.3.4 Avoiding Gradient Masking

We discussed gradient masking in Section 2.4 and its implications on finding adversarial examples.

For SOAR, gradient masking leads to a poor approximation of the loss function, which in turn

results in an ineffective regularizer. We provide an example to illustrate this issue and propose a

simple initialization method to address it.

Consider a linear classifier f : Rd × Rd → [0, 1] with the form f(x;w) = ϕ(⟨w , x ⟩), where

x,w ∈ Rd are the input and the weight, and ϕ(z) = 1
1+e−z is the sigmoid function. The output

of f has the interpretation of being a Bernoulli distribution. For the cross-entropy loss function

ℓ(x, y;w) = −[y log f(x;w) + (1 − y) log(1 − f(x;w))], the gradient w.r.t. the input x is ∇ℓ(x) =

(f(x;w)− y)w and the Hessian w.r.t. the input x is ∇2ℓ(x) = f(x;w)(1− f(x;w))ww⊤.

The second-order expansion in (3.3) with the gradient and Hessian evaluated at x is

ℓ(x + δ) ≈ ℓ(x) + r(x, y;w)w⊤δ +
1

2
u(x;w)δ⊤ww⊤δ, (3.13)

where r = r(x, y;w) = f(x;w) − y and u = u(x;w) = f(x;w)(1 − f(x;w)). This residual term r

describes the difference between the predicted probability and the correct label. The u term can be

interpreted as how confident the model is about its predication (correct or incorrect), and is close

to 0 whenever the classifier is predicting a value close to 0 or 1. With this setup, the maximization

in (3.5) with p = 2 becomes

ℓ(x) + max
∥δ∥2≤ϵ

[
rw⊤δ +

1

2
uδ⊤ww⊤δ

]
= ℓ(x) + ϵ |r(x, y;w)| ∥w∥2 +

ϵ2

2
u(x;w) ∥w∥22 ,

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 24

Table 3.1: Comparing the probability of the most likely class across various training
methods (%). Specifically, we compute 1

N ΣN
n=1 maxi∈1,2,...,c P (xn)i, where P (xn)i represent the

model’s predicted probability of class i given test data xn. We focus on standard training, adversarial
training with 10-step PGD (PGD10), and SOAR with different initializations. We consider three
types of input data: clean data (Clean), perturbed with random noise (Random), and perturbed
with PGD1 (PGD1). We observe that SOAR with zero and random initializations are extremely
confident on all types of data. SOAR with PGD1 initialization is less confident on PGD1 data
compared to the other two types, close to the standard training.

Method Clean Random PGD1

Standard 98.11 97.81 96.83

PGD10 70.33 70.04 65.46

SOAR

- zero init 99.99 99.97 99.99

- random init 99.98 99.98 100.0

- PGD1 init 97.71 97.63 97.94

where the two regularizers encourage the norm of w to be small, weighted according to the residual

r(x, y;w) and the uncertainty u(x;w).

Consider a linear interpolation of the cross-entropy loss from x to a perturbed input x′. Specif-

ically, we consider ℓ(αx + (1 − α)x′) for α ∈ [0, 1]. Previous work has empirically shown that as α

increases from 0 to 1, the value of the loss follows a logistic function (Madry et al., 2018): exhibiting

little to no curvature at x, followed by rapid growth, and eventually plateauing. In such a case, if we

use Hessian exactly at x, it leads to an inaccurate approximation of the value at ℓ(x′). This causes

a poor approximation of the inner-max, and the derived regularization will not be effective.

For the approximation in (3.13), this issue corresponds to the scenario in which the classifier is

very confident about the clean input at x. Standard training techniques, such as minimizing cross-

entropy loss, optimize the model by assigning high probability to the correct class and pushing the

probabilities of incorrect classes toward 0. This incentivizes the model to return the correct label

with high confidence. Whenever the classifier is correct with a high confidence, both r and u will

be close to zero. As a result, the effect of the regularizer diminishes, i.e., the weights are no longer

regularized. In such a case, the Taylor series expansion, computed using the gradient and Hessian

evaluated at x, becomes an inaccurate approximation to the loss, and hence its maximizer is not a

good solution to the inner maximization problem.

Note that this does not mean that Taylor series expansion cannot be used to approximate the

loss. In fact, by the mean value theorem, there exists an h⋆ ∈ (0, 1) such that the second-order Taylor

expansion is exact: ℓ(x+ δ) = ℓ(x) +∇ℓ(x)⊤δ + 1
2δ

⊤∇2ℓ(x+h⋆δ)δ. The issue is that if we compute

the Hessian at x (instead of at x + h⋆δ), our approximation might not be very good whenever the

curvature profile of the loss function at x is drastically different from the one at x + h⋆δ.

In Table 3.1, we demonstrate the ineffectiveness of SOAR when the gradient and Hessian are

evaluated at x. In particular, we compare the average value of the highest probability output for test

set data with various initializations, under different training methods. Training with SOAR using

zero or random initialization leads to models with nearly 100% confidence on their predictions. Here,

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 25

Algorithm 3.1: Improving adversarial robustness via SOAR

Input : Training dataset. Learning rate η, training batch size b, number of iterations T ,
ℓ∞ constraint of ϵ, Finite difference step-size h.

1 Initialize network with pretrained weight w;
2 for t ∈ {0, 1, . . . , T} do
3 Get mini-batch B = {(x1, y1) , · · · , (xb, yb)} from the training set.
4 for j = 1, . . . ,m (in parallel) do
5 x′

j ← xj + δ, where δ ← (δ1, δ2, . . . , δd)⊤ and δi ∼ U(− ϵ
2 ,

ϵ
2).

6 x′
j ← ΠB(xj ,

ϵ
2)

{
x′
j + ϵ

2 sign (∇xℓ(x
′
j))

}
where ΠB(xj ,

ϵ
2) denotes the projection onto

the ℓ∞-norm ball of radius ϵ
2 , centered at xj .

7 Sample z ∼ N (0, I(d+1)×(d+1)).
8 Compute the SOAR regularizer R(x′

j ; z, h,
ϵ
2) as (3.12).

9 Compute the pointwise objective: ℓSOAR(xj , yj) = ℓ(x′
j , yj) + R(x′

j ; z, h,
ϵ
2).

10 end

11 wt+1 ← wt − η × 1
b

∑b
j=1∇wt

ℓSOAR.

12 end

random initialization denotes randomly initializing x within the ℓ∞ ball of size ϵ centered at the clean

input x: x′ = x+δ, where δ = (δ1, δ2, . . . , δd)⊤ and δi ∼ U(−ϵ, ϵ). The results in Appendix 3.C show

that those SOAR-regularized models are still vulnerable under transfer-based black-box attacks.

Highly confident predictions could be an indication for gradient masking. Suppose that the model

makes predictions with 100% confidence on any given input. This leads to a piece-wise constant loss

surface that is either zero (correct predictions) or infinity (incorrect predictions). The gradient of

this loss function is either zero or undefined, and thus making gradient ascent ineffective. Therefore,

white-box gradient-based attacks such as PGD are unable to find adversarial examples.

This suggests a heuristic to improve SOAR. That is to evaluate the gradient and Hessian, through

FD approximation (3.11) at a less confident point within the ℓ∞ ball of x. We found that evaluating

the gradient and Hessian at inputs perturbed by 1-step PGD (PGD1) can alleviate the issue of

overconfident predictions, reducing the confidence levels to those comparable with standard training.

Also, to ensure the regularization is of the original ℓ∞ ball of ϵ, we first initialize x with ℓ∞ PGD1

perturbation of size ϵ
2 , and then the SOAR regularizer is applied with the perturbation constrained

by ϵ
2 . Based on this heuristic, the regularized pointwise objective for a data point (x, y) is

ℓSOAR(x, y) = ℓ(x′, y) + R(x′; z, h,
ϵ

2
), (3.14)

where z ∼ N (0, I(d+1)×(d+1)) and the point x′ is initialized at PGD1 adversary. We summarize the

full training procedure with SOAR in Algorithm 3.1. Note that it is presented as if the optimizer

is SGD, but we may use other optimizers as well. Moreover, we include additional discussions and

experiments on gradient masking in Appendix 3.F.

3.3.5 Related Work

Several regularization-based alternatives to adversarial training have been proposed. Simon-Gabriel

et al. (2019) considered the ℓ∞ perturbation set and designed a regularizer under the first-order

Taylor approximation, which we refer to as FOAR. Qin et al. (2019) proposed local linearity regu-

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 26

larization (LLR), where the local linearity is defined by the maximum error of the first-order Taylor

approximation of the loss. The LLR objective consists of the local linearity measure and the mag-

nitude of the projection of gradient along the corresponding direction of the local linearity measure.

CURE (Moosavi-Dezfooli et al., 2019) is the closest to our method. The authors observed that

adversarial training leads to a reduction in the magnitude of eigenvalues of the Hessian w.r.t. the

input. Thus, they proposed directly minimizing the curvature of the loss function to mimic the

effect of adversarial training. An important advantage of our proposed method is that SOAR is

derived from a complete second-order Taylor approximation of the loss, while CURE exclusively

focuses on the second-order term for the estimation of the curvature. Note the final optimization

objective in SOAR, FOAR, LLR and CURE contains derivative w.r.t. the input of the DNN, and

such a technique was first introduced to improve generalization by Drucker et al. (1992) as double

backpropagation.

Another related line of adversarial regularization methods do not involve approximation to the

loss function nor robust optimization. TRADES introduces a regularization term that penalizes the

difference between the output of the model on a training data and its corresponding adversarial

example (Zhang et al., 2019). Misclassification aware adversarial training (MART) reformulated

the training objective by explicitly differentiating between the misclassified and correctly classified

examples (Wang et al., 2020b). Ding et al. (2018) present another regularization approach that

leverages adaptive margin maximization (MMA) on correctly classified example to robustify the

model.

3.4 Experiments

In this section, we verify the effectiveness of the proposed regularization method. Evaluations

and discussions focus on the CIFAR-10 dataset, with model robustness evaluated using ℓ∞-norm

constrained perturbations generated by PGD. Additional results on ℓ2-norm are deferred to Ap-

pendix 3.D. Our experiments show that training with SOAR leads to significant improvements in

adversarial robustness against white-box and transferred perturbations. We also evaluate SOAR

under state-of-the-art AutoAttack (Croce et al., 2020) method and discuss the decreased robustness

against it.

3.4.1 Experiment Setup

Model and Dataset: We focus on ResNet-10 (He et al., 2016a) on the CIFAR-10 dataset in

this section. Training data is augmented with random crops and horizontal flips. Evaluations on

additional model architecture is included in Appendix 3.E.

Baseline: The baseline methods consist of: (1) Standard: training with no adversarially perturbed

data; (2) PGD10: training with 10-step PGD adversarial examples; (3) TRADES (Zhang et al.,

2019); (4) MART (Wang et al., 2020b) and (5) MMA (Ding et al., 2018). Additionally, we incor-

porate the first-order regularizer, FOAR (Simon-Gabriel et al., 2019), as part of the baseline to

demonstrate the improved robustness of SOAR. For a fair comparison, we also evaluated FOAR

with different initializations, as detailed in Appendix 3.C. We found that FOAR achieves the best

robustness when initialized with PGD1. Therefore, we only present this variation of FOAR in this

section. The optimization procedure for all baseline is described in detail in Appendix 3.A.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 27

Table 3.2: Evaluation of classification accuracy for models on the original CIFAR-10
test dataset and under ℓ∞-norm constrained white-box attacks (%). We evaluate the
model robustness on the testing data perturbed using FGSM and various configurations of PGD.
We also consider a stronger setting in which multiple runs of attacks are conducted for each given
input: PGD20-50 denotes 20-step PGD attacks with 50 restarts. All perturbations are bounded
by ℓ∞-norm with ϵ = 8/255. SOAR outperforms all other methods in terms of robustness against
white-box attacks.

Method Clean FGSM PGD20 PGD100 PGD200 PGD1000 PGD20-50

Standard 92.54 21.59 0.14 0.09 0.10 0.08 0.10

PGD10 80.64 50.96 42.86 42.27 42.21 42.17 42.55

TRADES 75.61 50.06 45.38 45.19 45.18 45.16 45.24

MART 75.88 52.55 46.60 46.29 46.25 46.21 46.40

MMA 82.37 47.08 37.26 36.71 36.66 36.64 36.85

FOAR 65.84 36.96 32.28 31.87 31.89 31.89 32.08

SOAR 87.95 67.15 56.06 55.00 54.94 54.69 54.20

Metric: Results reported in this chapter focus on classification accuracy; therefore, higher numbers

indicate greater model robustness. Note that all methods in this section are trained to defend against

ℓ∞ norm attacks with ϵ = 8/255,1 as this ϵ value is commonly used in several early influential

works (Kurakin et al., 2016; Madry et al., 2018). The PGD adversaries discussed in this section are

generated with ϵ = 8/255 and a step size of 2/255. PGD20-50 denotes 20-step PGD attacks with 50

restarts. In Section 3.4.2, we compare SOAR with baseline methods on ℓ∞ AutoAttack (Croce et al.,

2020) adversaries using different ϵ values. AutoAttack consists of four individual attack algorithms,

and with the exception of two specific targeted methods within AutoAttack, all other perturbations

are untargeted (Section 2.1).

3.4.2 Evaluating Model Robustness

Against White-Box Attacks

In Table 3.2, we report the robustness of models trained with SOAR and the baseline methods against

PGD and FGSM attacks in the white-box setting. Training with SOAR significantly improves

the adversarial robustness against FGSM and all PGD attacks, leading to higher robustness in

all k-step PGD attacks on the ResNet model. Also, note that FOAR achieves 32.28% against

PGD20 attacks. Despite its uncompetitive performance, this shows that approximating the robust

optimization formulation based on Taylor series expansion is a reasonable approach. This justifies

our extension to a second-order approximation, as the first-order alone is not sufficient.

Robustness Against Black-box Attacks

Many defenses only reach an illusion of robustness through methods collectively known as gradient

masking (Athalye et al., 2018). These methods often fail against transferred perturbations, which

1The value 255 in the denominator is due to digital images often being represented in 8-bit format, where any
information below 1/255 is discarded.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 28

Table 3.3: Evaluation of classification accuracy for models under ℓ∞-norm constrained
perturbations in the black-box setting (%). We evaluate model robustness using test data
perturbed by SimBA and various configurations of transferred PGD perturbations. For transferred
perturbations, We consider two source models: ResNet10 and WideResNet, denoted by suffixes
R and W, respectively. All perturbations are bounded by the ℓ∞-norm with ϵ = 8/255. SOAR
outperforms all other methods in terms of robustness against black-box attacks.

Method SimBA PGD20-R PGD20-W PGD1000-R PGD1000-W

PGD10 47.27 77.19 79.48 77.22 79.55

TRADES 47.67 72.28 74.39 72.24 74.37

MART 48.57 72.99 74.91 72.99 75.04

MMA 43.53 78.70 80.39 78.72 81.35

FOAR 35.97 63.56 65.20 63.60 65.27

SOAR 68.57 79.25 86.35 79.49 86.47

are generated from an independently trained, undefended model.

In our evaluation, the transferred attacks consist of PGD20 and PGD1000 perturbations, gener-

ated using an independently initialized and trained ResNet and WideResNet source model, denoted

by suffixes R and W, respectively. Beyond these transferred perturbations, Tramer et al. (2020)

recommends considering score-based attacks such as Simple Black-box Attack (SimBA) (Guo et al.,

2019), which are particularly relevant in real-world applications where gradient information is un-

available. SimBA is a query-based algorithm that iteratively samples, evaluates model responses,

and refines the next sample to improve query efficiency. Empirically, attacks like SimBA have proven

more effective than transferred PGD perturbations. For these reasons, we have included SimBA in

our evaluations as well. All perturbations discussed in this section are ℓ∞ constrained at ϵ = 8/255.

SOAR achieves the highest level of robustness against all baseline methods trained on ResNet,

as shown in Table 3.3. It is important to note that all defense methods are substantially more

vulnerable to the score-based SimBA method, yet the SOAR regularized model remains the most

robust method against SimBA.

Robustness Against AutoAttack

We also evaluate SOAR against a state-of-the-art method called AutoAttack (Croce et al., 2020). We

observe that all models tested become more vulnerable to AutoAttack. This attack algorithm consists

of an ensemble of four attacks: two parameter-free versions of PGD (APGD-CE and APGD-DLR),

Fast Adaptive Boundary (FAB) attack (Croce et al., 2019), and a score-based black-box method

called Square Attack (Andriushchenko et al., 2020). The major difference between the two PGD

attacks is the loss they are based on: APGD-CE is based on the cross-entropy loss similar to the

vanilla PGD (Madry et al., 2018), and APGD-DLR is based on the logit difference similar to the

CW attack (Carlini et al., 2017).

For robustness evaluation, testing each sample across all four attack algorithms is not only com-

putationally expensive but also unnecessary, as AutoAttack is successful if misclassification happens

under any one of the algorithms. For a complete understanding of why models are vulnerable,

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 29

Table 3.4: Evaluation of classification accuracy for models under ℓ∞-norm constrained
perturbations generated using AutoAttack (%). AutoAttack is an ensemble of four ℓ∞-
bounded attacks: APGD-CE, APGD-DLR, FAB, and Square Attack. Here, we tested it against the
four individual attacks included in AutoAttack.

Method Untargeted APGD-CE Targeted APGD-DLR Targeted FAB Square Attack

ϵ 8/255 4/255 8/255 4/255 8/255 4/255 8/255 4/255

PGD10 41.57 61.95 38.99 60.11 39.68 60.26 47.84 63.02

TRADES 44.69 60.67 40.27 58.25 40.64 58.45 46.16 61.22

MART 45.01 62.05 39.22 58.38 39.90 58.65 46.90 62.03

MMA 35.59 58.15 34.77 57.82 35.50 58.24 45.24 63.99

FOAR 31.15 49.87 27.56 46.91 27.92 47.04 35.92 51.05

SOAR 53.40 63.87 18.25 52.64 20.22 53.29 35.94 63.90

however, it is necessary to evaluate them against each of the four individual attacks included in

AutoAttack.

The results are summarized in Table 3.4. We observe that the robustness against untargeted

APGD-CE is similar to that against PGD (Table 3.2), which is expected, as both attacks are based on

cross-entropy PGD. The key difference is that APGD-CE incorporates a step-size selection strategy,

whereas vanilla PGD uses a fixed step size. However, SOAR’s robustness decreases against targeted

APGD-DLR and targeted FAB attacks. Notably, at ϵ = 8/255, SOAR is particularly vulnerable

to targeted APGD-DLR, with a robust accuracy of only 18.25%. To explore whether SOAR could

improve robustness at smaller perturbation scales, we evaluate under different ϵ values. At ϵ = 4/255,

SOAR demonstrated more consistent improvements in robustness.

We propose two hypotheses to explain the observed decrease in robustness. First, SOAR may

overfit to perturbations generated using the cross-entropy loss. This is because APGD-DLR, which

is based on logit differences, and FAB, which aims to find minimal perturbation distances, are

fundamentally different from PGD which maximizes the cross-entropy loss. In theory, SOAR could

be derived using losses other than cross-entropy; however, two issues remain: 1. previous work

have discussed the challenges of formulating the logit difference objective for ℓ∞-norm constrained

perturbations (Carlini et al., 2017), and 2. could SOAR overfit to these alternative objectives,

resulting in decreased robustness against PGD? These challenges need to be addressed.

The second hypothesis is that, although SOAR shows more consistent robustness improvements

at smaller values of ϵ, this suggests that the techniques discussed in Section 3.3.4 may not fully resolve

the issues arising from the second-order approximation. The PGD1-based initialization might still be

insufficient for an accurate second-order approximation, limiting SOAR’s effectiveness at improving

robustness against perturbations with the original ϵ for which it was designed.

Finally, it is important to recognize SOAR’s promising potential as a defense, as demonstrated

by our results with transfer-based perturbations and score-based, query-based attacks like SimBA.

This highlights that SOAR offers meaningful improvements in robustness beyond gradient-based

attack algorithms.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 30

3.5 Conclusions

This chapter proposed SOAR, a regularizer that improves the robustness of DNN to adversarial

perturbations. SOAR was obtained using the second-order Taylor series approximation of the loss

function w.r.t. the input, and approximately solving the inner maximization of the robust opti-

mization formulation. We showed that training with SOAR leads to significant improvement in

adversarial robustness under the ℓ∞ and the ℓ2 attacks.

In the following chapters, we build upon the analytical tools used in SOAR to explore different

dimensions of adversarial robustness. Most notably, the robust optimization framework, along with

the analysis of linear models, helps us understand the robustness of models trained with different

optimization techniques in Chapter 4. SOAR, as a regularizer, represents an algorithmic approach

to improving adversarial robustness. In the next chapter, we shift our focus to model architecture

and investigate how robustness can be improved when the dataset exhibits a hierarchical structure

between classes.

3.5.1 Challenges and Limitations

Batch Normalization: We observe that networks with BatchNorm layers do not benefit from

SOAR in terms of adversarial robustness. Despite an extensive hyperparameter search, we were

unable to achieve meaningful improvements in such networks. A related study by Galloway et

al. (2019) explores the connection between BatchNorm and adversarial robustness, highlighting

a significant gap in robustness between networks with and without BatchNorm layers in VGG-

based architectures (Simonyan et al., 2014) under standard training. Further investigation into the

interaction between SOAR and BatchNorm is necessary, and we consider this an important future

research direction.

Starting from Pretrained Models: We found it challenging to train with SOAR on newly-

initialized models. Fine-tuning on a pretrained model for specific tasks is a common approach, and

similar to curriculum learning (Bengio et al., 2009), SOAR benefits from this approach. Initially,

the model is trained on an easier task (standard training), followed by regularization for a related

but more challenging task (improving adversarial robustness).

Catastrophic Overfitting: An important observation is that when models achieve high adversarial

accuracy and continue training for extended periods, both standard and adversarial accuracy drop

significantly. This phenomenon is similar to what has been described as catastrophic forgetting (Cai

et al., 2018) and catastrophic overfitting (Wong et al., 2019a). Wong et al. (2019a) address this with

early stopping. In our experiments, we found that using a large learning rate accelerates adversarial

accuracy but leads to earlier catastrophic overfitting. As a solution, we fixed the number of epochs

to 200 and carefully tuned learning rates to prevent overfitting.

Computational Complexity: Our primary goal is to propose regularization as an alternative

approach to improving adversarial robustness. Although we have discussed techniques to improve

implementation efficiency, there remains potential for further speedup. While SOAR is faster than

MART and TRADES, it is still slower than PGD10 adversarial training. The computational com-

plexity is characterized by the number of forward and backward passes for a single mini-batch, as

shown in Table 3.5.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 31

Table 3.5: Comparison of Forward and Backward Passes for Different Methods

Method Forward Passes Backward Passes

Standard Training 1 1

PGD-based Adversarial Training (k-step) k+1 k+1

FOAR 1 2

SOAR 3 4

Appendices

In the following appendices, we provide some auxiliary results that are omitted from the main body

of the chapter. In Appendix 3.A, we first describe the exact optimization schedule to train the

baseline models. In Appendix 3.B, we compare the effect in the number of randomly sampled z

on the SOAR regularized loss. In Appendix 3.C, we compare trained using SOAR and FOAR with

different initializations. In Appendix 3.D, we evaluate the robustness of SOAR against ℓ2-norm

constrained perturbations on CIFAR-10. In Appendix 3.E, we evaluate the robustness of SOAR

against ℓ∞ bounded white-box PGD perturbations on models with different capacities. Finally, in

Appendix 3.F, we include additional experiments to verify that SOAR improves robustness of the

model without gradient masking.

3.A Implementation Details

Standard training: Models are trained for a total of 200 epochs, with an initial learning rate of

0.1. The learning rate decays by an order of magnitude at epoch 100 and 150. We used a mini-batch

size of 128 for testing and training. We used SGD optimizer with momentum of 0.9 and a weight

decay of 2e-4.

Adversarial training with PGD10: The optimization setting is the same as the one used for

standard training. Additionally, to ensure that the final model has the highest adversarial robustness,

we save the model at the end of every epoch, and the final evaluation is based on the one with the

highest PGD20 accuracy.

SOAR: SOAR refers to continuing the training of the standard model on ResNet. It is trained

for a total of 200 epochs with an initial learning rate of 0.004 and decay by an order of magnitude

at epoch 100. We used SGD optimizer with momentum of 0.9 and a weight decay of 2e-4. We use a

FD step-size h = 0.01 for the regularizer. Additionally, we apply a clipping of 10 on the regularizer.

MART and TRADES: We used the same optimization setup as the ones in their respective

public repository.2 We briefly summarize it here. The model is trained for a total of 120 epochs,

with an initial learning rate of 0.1. The learning rate decays by an order of magnitude at epoch 75,

90, 100. We used SGD optimizer with momentum of 0.9 and a weight decay of 2e-4. We performed

a hyperparameter sweep on the strength of the regularization term β and selected one that resulted

in the best performance against PGD20 attacks.

2https://github.com/YisenWang/MART

https://github.com/YisenWang/MART

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 32

Table 3.6: Comparing the values of the regularized loss computed using different numbers
of z at the beginning and the end of SOAR regularization.

Checkpoints n = 1 n = 10 n = 100

Beginning of SOAR 10.58 10.58 10.58

End of SOAR 1.57 1.56 1.56

Table 3.7: Comparing SOAR with different initializations (%). We follow the evaluation
setting in Table 3.2 and evaluate FOAR on the test data perturbed using FGSM and various con-
figurations of PGD.

Initialization Standard accuracy White-box PGD20 Transferred PGD20

zero 91.73 89.24 2.86

rand 91.70 90.82 9.16

PGD1 87.95 56.06 79.25

MMA: We used the same optimization setup as the one in its public repository.3 We briefly

summarize it here. The model is trained for a total of 50000 iterations, with an initial learning rate

of 0.3. The learning rate changes to 0.09 at the 20000 iteration, 0.03 at the 30000 iteration and

lastly 0.009 at the 40000 iteration. We used SGD optimizer with momentum of 0.9 and a weight

decay of 2e-4. We performed a hyperparameter sweep on the margin term and selected the one that

resulted in the best performance against PGD20 attacks.

3.B Effect of the Number of Randomly Sampled z on SOAR

Regularized Loss

Suppose we slightly modify (3.14) by introducing

ℓSOAR(x, y, n) = ℓ(x′, y) +
1

n

n∑
i=0

R(x′; z(i), h, ϵ)

to account for the effect of using multiple randomly sampled z(i) in computing the SOAR regularized

loss. In Table 3.6, we observed the model at two checkpoints–initially and at the completion of

SOAR regularization–and found that the value of the regularized loss remains almost unchanged as

we increased n from 1 to 100, so the results reported in Section 3.4 uses n = 1.

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 33

Table 3.8: Comparing FOAR with different initializations (%). We evaluate the performance
of SOAR with different initializations on CIFAR-10 against white-box and transfer-based black-box
ℓ∞ bounded adversarial perturbations (ϵ = 8/255).

Initialization Standard FGSM PGD20 PGD100 PGD200 PGD1000 PGD20-50

zero 74.43 33.39 23.65 22.83 22.79 23.23 68.58

rand 73.96 33.62 24.71 23.96 23.93 24.37 69.04

PGD1 65.84 36.96 32.28 31.87 31.89 32.08 63.56

3.C SOAR and FOAR with Different Initializations

SOAR with Different Initializations

We report the adversarial robustness of the model trained using SOAR with different initialization

techniques in Table 3.7. Despite the high accuracy against white-box PGD perturbations, models

initialized with zero and random settings exhibit poor performance against transferred attacks. This

suggests the presence of gradient masking with zero and random initializations. In contrast, SOAR

with PGD1 initialization appears to mitigates this issue.

FOAR with Different Initializations

For a more accurate second-order approximation, we approximate the loss function using inputs

perturbed with PGD1 initialization. For a fair comparison, we also evaluate FOAR with different

initializations. We observe that FOAR also benefits from PGD1 initialization, as shown in Table 3.8.

Therefore, we only present this variation of FOAR in Section 3.4.

3.D Robustness Under ℓ2-norm Constrained Perturbations

We evaluate SOAR and two of the baseline methods, PGD10 and TRADES, against ℓ2 white-box

and transferred attacks on CIFAR-10 in Table 3.9. No ℓ2 results were reported by MART and we

are not able to reproduce the ℓ2 results using the implementation by MMA, thus those two methods

are not included in our evaluation.

In Section 3.3.2, we show that the ℓ∞ formulation of SOAR with ∥δ∥∞ = ϵ is upper-bounded

by the ℓ2 formulation of SOAR with ∥δ∥2 = ϵ
√
d. In other words, models trained with SOAR to be

robust against ℓ∞ attacks with ϵ = 8
255 should also exhibit improved robustness against ℓ2 attacks

with ϵ = 8
255

√
32 ∗ 32 ∗ 3 = 1.74. In our evaluation, all ℓ2 adversaries used during PGD10 and

TRADES are generated with 10-step PGD (ϵ = 1.74) and a step size of 0.44. Note that the goal

here is to show the improved robustness of SOAR against ℓ2 attacks rather than being SOTA. The

optimization procedures are the same as the ones used in the ℓ∞ evaluation.

We observe that training with SOAR improves the robustness of the model against ℓ2 attacks. We

demonstrate the improved robustness using an increasing range of ϵ, with perturbations generated

using 100 iterations of PGD and a step size of 2.5ϵ
100 . In Table 3.9, we find that training with SOAR

3https://github.com/BorealisAI/mma_training

https://github.com/BorealisAI/mma_training

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 34

Table 3.9: Evaluation of classification accuracy for models under ℓ2-norm constrained
white-box and transferred perturbations (%). We evaluate the model robustness on the
testing data perturbed using PGD100 under various ϵ. The last column shows the robustness
against transferred ℓ2 PGD perturbations with ϵ = 1.74.

Method ϵ = 60
255 ϵ = 120

255 ϵ = 255
255 ϵ = 1.74 Transfer

PGD10 68.13 62.03 47.53 28.09 70.86

TRADES 68.59 62.39 45.42 25.67 69.02

SOAR 75.39 66.81 60.90 56.89 69.52

significantly increases robustness against white-box and transferred ℓ2 adversaries. As ϵ increases,

SOAR remains robust against white-box ℓ2 attacks (ϵ = 1), while the effectiveness of other methods

diminishes.

The last column of Table 3.9 shows the robustness against transferred ℓ2 attacks (ϵ = 1.74),

where the source model is a separately trained ResNet10 using the unperturbed training set. SOAR

achieves the second-highest robustness compared to baseline methods against these transferred ℓ2

attacks. This result supports findings by Simon-Gabriel et al. (2019), who empirically showed

that adversarial robustness achieved through regularization can defend against multiple ℓp-norm

perturbations simultaneously, a benefit not observed with adversarial training.

3.E Robustness Improvement with Increasing Model Capac-

ities

Empirical studies reveal that increasing model capacity can significantly enhance adversarial robust-

ness (Madry et al., 2018; Wang et al., 2020b) gained through adversarial training with PGD adver-

saries. One hypothesis is that models with higher capacity have a greater ability to generalize across

different examples, including adversarial ones. Our result shows that such an improvement with in-

creasing model capacity is not limited to adversarial training but also extends to regularization-based

methods like SOAR.

Table 3.10 compares the robustness of SOAR against ℓ∞-norm bounded white-box PGD pertur-

bations on networks with varying capacities. CNN6 and CNN8 denote convolutional networks with

6 and 8 convolution layers, respectively, while ResNet10 is the network used in Section 3.4. The

results show that as network capacity increases, there are improvements in both standard accuracy

and adversarial accuracy. We expect further robustness improvement with larger capacity networks.

3.F Discussion on Gradient Masking

To confirm that SOAR improves the robustness of the model without inducing gradient masking,

we conduct several experiments detailed below.

In the ℓ∞ attack setting, PGD generates perturbations using the sign of the gradient, sign(∇xℓ(x)).

When elements in ∇xℓ(x) is too small or zero, the gradient direction may not reflect the true ascent

direction. To assess the strength of the gradient, we measure the number of non-zero elements in

CHAPTER 3. REGULARIZED TRAINING FOR IMPROVING ADVERSARIAL ROBUSTNESS 35

Table 3.10: Evaluation of classification accuracy for SOAR-regularized models with dif-
ferent capacities (%). In addition to ResNet10, we consider two smaller convolutional networks,
denoted as CNN6 and CNN8. Evaluations are conducted on CIFAR-10 against white-box ℓ∞
bounded PGD perturbations (ϵ = 8/255). We find that SOAR-regularized models with larger
capacities exhibit better robustness against adversarial perturbations.

Model Standard PGD20 PGD100 PGD200

CNN6 81.73 32.83 31.20 31.15

CNN8 83.65 47.30 46.07 45.83

ResNet10 87.95 56.06 55.00 54.94

the gradient, averaged over all test inputs. This value is defined as:

1

N

N∑
i=1

d∑
j=1

I(|∇xi
ℓ(xi)j | > 10−6),

where N denotes the number of test inputs, d is the dimension of the input, and I(·) is the indicator

function. For CIFAR-10, N = 10000 and d = 32× 32× 3 = 3072.

A model with gradient masking exhibits far fewer non-zero elements. In our experiments, the

average number of non-zero gradient elements was 3072 for PGD10-trained, indicating no gradient

masking, 3069 for SOAR with PGD1 initialization, and only 1043 for SOAR with zero initialization,

which indicates gradient masking. These results suggest that SOAR with PGD1 initialization pre-

serves a similar number of meaningful gradient elements as the PGD10 model, allowing the PGD

adversary to generate effective perturbations.

Furthermore, in Section 3.4, 20-iteration ℓ∞ PGD adversaries are generated with a step size of
2

255 and ϵ = 8
255 . Suppose we use ϵ = 1 instead of ϵ = 8

255 , while keeping all other parameters

the same. This means allowing the maximum ℓ∞ perturbation to span the entire input range

[0, 1] and generating PGD20 attacks. We observe that these attacks result in near black-and-white

images for SOAR with PGD1 initialization, and the model has 0% accuracy against such PGD20

attacks, indicating that the model is not robust against such strong perturbations. This suggests

that SOAR does not induce gradient masking and that the model is indeed robust against white-box

perturbations.

Chapter 4

Understanding the Robustness

Differences between SGD and

Adaptive Gradient Methods

4.1 Introduction

Adaptive gradient methods, such as Adam (Kingma et al., 2015) and RMSProp (Hinton et al., 2012),

are a family of popular techniques to optimize machine learning models. They are an extension

of the traditional GD method, which uses the gradient of a differentiable objective function to

update the model’s parameters in the direction that improves the objective. To speed up the

optimization procedure, the adaptive gradient methods introduce a coordinate-wise learning rate

to adjust the update for each parameter based on its individual gradient. Previous empirical work

investigates the difference in the standard generalization between models trained using SGD and

adaptive gradient methods (Wilson et al., 2017; Agarwal et al., 2020), while recent efforts have

focused on understanding the implicit bias of SGD (Gunasekar et al., 2017; Soudry et al., 2018; Lyu

et al., 2020) and adaptive gradient algorithms (Qian et al., 2019; Wang et al., 2021a).

Nevertheless, our result shows that in practice such a gap in the standard generalization is

relatively small, in contrast to the difference between the robustness of models trained using those

algorithms. While more ML-based systems are deployed in the real world, the models’ robustness,

their ability to maintain their performance when faced with noisy or corrupted inputs, has become

an important criterion. There is a large volume of literature on developing specialized methods to

improve the robustness of neural networks (e.g., Section 2.4 and Chapter 3), yet practitioners still

simply use standard methods to train their models (Silva et al., 2020). In fact, a recent survey shows

that only 3 of the 28 organizations have developed their ML-based systems with the improvement

in robustness in mind (Kumar et al., 2020).

Therefore, this motivates us to understand the effect of optimizers on the robustness of models

obtained in the standard training regime. In particular, we focus on models trained using SGD and

This chapter is based on our work in Understanding the robustness difference between stochastic gradient descent
and adaptive gradient methods.

36

https://arxiv.org/pdf/2308.06703
https://arxiv.org/pdf/2308.06703

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 37

40 50 60 70 80 90
Acc. under Gaussian perturbations (%)

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

100.0

St
an

da
rd

 te
st

 a
cc

. (
%

) MNIST

FashionMNISTCIFAR10

CIFAR100

SVHN

Caltech101
Imagenette

SGD
RMSProp
Adam

50 55 60 65 70 75 80 85
Acc. under 2-bounded attacks (%)

MNIST

FashionMNISTCIFAR10

CIFAR100

SVHN

Caltech101

Imagenette

30 40 50 60 70
Acc. under -bounded attacks (%)

MNIST

FashionMNIST
CIFAR10

CIFAR100

SVHN

Caltech101
Imagenette

Figure 4.1: Comparison between models trained using SGD, Adam, and RMSProp across
seven benchmark datasets. Each colored triplet denotes models on the same dataset. Models
trained by different algorithms have similar standard generalization performance, but there is a
distinct robustness difference as measured by the test data accuracy under Gaussian noise, ℓ2 and ℓ∞
bounded adversarial perturbations (Croce et al., 2020). Results are averaged over three independent
model initializations and trainings.

adaptive gradient methods.

4.1.1 The Robustness Difference between Models Trained by Different

Algorithms

As a first step, we compare how models, trained with SGD, Adam, and RMSProp, differ in their

standard generalization and robustness on seven benchmark datasets (LeCun, 1998; Xiao et al.,

2017; Krizhevsky et al., 2009; Netzer et al., 2011; Howard, 2019; Li et al., 2004). In our experiments,

we evaluate standard generalization using the accuracy of the trained classifier on the original test

dataset. To measure robustness, we consider the classification accuracy on the test dataset perturbed

by Gaussian noise, as well as ℓ2- and ℓ∞-bounded adversarial perturbations (2.3), generated using

the methods described in (Croce et al., 2020). We follow the default Pytorch configuration to train

all the models and sweep through a wide range of learning rates. The final model is selected with

the highest validation accuracy. Implementation details are discussed in Appendix 4.A.

The complete result of the experiment can be found in Appendix 4.B. In this section, we visualize

the difference between models trained with SGD and the adaptive gradient methods in Figure 4.1,

pointing to two important observations. First, the relatively small vertical differences among the

three models, on a given dataset, show that the models have similar standard generalization per-

formance despite being trained by different algorithms. On the other hand, we observe, under all

three types of perturbations, a large horizontal span with SGD always positioned on the far right

side among the three. This indicates that models trained by SGD significantly outperform models

trained by the other two in terms of their robustness against perturbations.

While our primary experiments are centered around models based on convolutional neural net-

works, within the computer vision domain, we also extend our analysis to include results from ex-

periments on Vision Transformers (Dosovitskiy et al., 2021) and an audio dataset (Warden, 2018).

The results of these additional experiments are consistent with the findings presented in Figure 4.1

and are detailed in Appendix 4.B. Visualizations of the perturbations in the evaluation can be found

in Appendix 4.E.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 38

4.1.2 Contributions

Previous optimization work often studies how the structure of the dataset affects the dynamics

of learning. For example, some focus on a dataset with different feature strengths (Amari et al.,

2021; Pezeshki et al., 2021), while others assume a linearly separable dataset (Wilson et al., 2017;

Gunasekar et al., 2017; Soudry et al., 2018). In our work, we investigate how the frequency char-

acteristics of the dataset impact the robustness of models trained by SGD and adaptive gradient

methods. We make the following contributions:

• We demonstrate that natural datasets contain irrelevant frequencies, which, when removed,

have negligible effects on standard generalization performance (Section 4.3.1).

• We also observe that neural networks trained by different algorithms can have very different

robustness against perturbations in the direction of the irrelevant frequencies (Section 4.3.2).

• Those observations lead to our claim that models only need to learn how to correctly use

relevant information in the data to optimize the training objective, and because their use of the

irrelevant information is under-constrained, it can lead to solutions sensitive to perturbations

(Section 4.3).

• Our analysis of linear models on least square regression shows that linear models’ robustness

to ℓ2-norm bounded changes is inversely proportional to the model parameters’ weight norm:

a smaller weight norm implies better robustness (Section 4.4.1).

• We study the learning dynamics of GD and signGD, a memory-free version of Adam and

RMSProp, with linear models. With a three-dimensional input space, the analysis shows

that models optimized with GD exhibit a smaller weight norm compared to their signGD

counterparts (Section 4.4.2).

• To generalize this result in the deep learning setting, we demonstrate that neural networks

trained by Adam and RMSProp often have a larger Lispchitz constant and, consequently, are

more prone to perturbations (Section 4.5).

Specifically, in the analysis of linear models, we design a least square regression task using a

synthetic dataset whose frequency representation mimics the natural datasets. This setting allows

us to i) mathematically define the standard and adversarial population risks, ii) design a learning

task that has multiple optima for the standard population risk, each with a different adversarial

risk, and iii) theoretically analyze the learning dynamics of various algorithms.

4.2 Background

In this section, we briefly review the essential background to help understand our work, including

formulations of adaptive gradient methods and methods of representing signals in the frequency

domain.

4.2.1 Optimizations with Adaptive Gradient Algorithms

Consider the ERM problem introduced in Section 2.1. A common approach in solving ERM is SGD,

which minimizes the loss by iteratively updating the model parameters, w, using mini-batches of

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 39

data points sampled uniformly and independently from the training set (Xn, Yn)
N
n=1:

g(w) =
1

|B|
∑
n∈B
∇wℓ(Xn, Yn;w), (4.1)

where B ⊂ {1, ..., N} denotes the mini-batch and has a size of |B| ≪ N . The update rule of SGD is

w(t + 1) = w(t)− η(t)g(w(t)), where η(t) ∈ R+ denotes the learning rate.

A family of adaptive gradient methods has been used to accelerate training by updating the

model parameters based on a coordinate-wise scaling of the original gradients. Methods such as

Adam and RMSprop have demonstrated significant acceleration in training DNNs (Kingma et al.,

2015). Many adaptive gradient methods can be written as

m(t + 1) = β1g(w(t)) + (1− β1)m(t)

v(t + 1) = β2g(w(t))2 + (1− β2)v(t)

w(t + 1) = w(t)− η(t)
m(t + 1)√
v(t + 1) + ϵ

, (4.2)

where g(w(t)) is the stochastic estimate of gradient used by SGD (4.1), m and v are the first and

second-order memory terms with their strength specified by β1 and β2, and ϵ is a small constant

used to avoid division-by-zero. Such a general form has been widely used to study the dynamics of

adaptive gradient algorithm (Wilson et al., 2017; Silva et al., 2020; Ma et al., 2022b). For example,

Adam corresponds to β1, β2 ∈ (0, 1), and RMSProp is recovered when β1 = 1 and β2 ∈ (0, 1). Notice

that such updates rely on the history of past gradients, and this makes the precise understanding

and analysis of adaptive gradient methods more challenging (Duchi et al., 2011).

Recent work analyzes the learning dynamics of adaptive gradient methods by separately con-

sidering the direction and the magnitude of the update (Kingma et al., 2015; Balles et al., 2018;

Ma et al., 2022b). As a simple example, to demonstrate how adaptive gradient methods can poten-

tially accelerate learning compared to the vanilla SGD, consider a memory-free version of (4.2) with

β1 = β2 = 1 and ϵ = 0. It is easy to see that the update rule in (4.2) becomes signGD:

w(t + 1) = w(t)− η(t) sign(g(w(t)))

= w(t)− η⃗(t)⊙ g(w(t)), (4.3)

where ⊙ denotes Hadamard product, η⃗(t) ∈ Rd is a coordinate-wise learning rate based on the

absolute value of the weight, i.e., η⃗(t) = η(t)
|g(w(t))| . Therefore, η⃗(t) accounts for the magnitude of the

weight and a larger learning rate is used for parameters with smaller gradients.

In general, gradient-sign-based optimization methods are not successful in training deep learning

models (Riedmiller et al., 1993; Ma et al., 2022b), nevertheless, methods such as signGD can shed

light on the learning dynamics of adaptive gradient methods (Karimi et al., 2016; Balles et al., 2018;

Moulay et al., 2019). For example, recent work by Ma et al. (2022b) studies the behavior of adaptive

gradient algorithms in the continuous-time limit. They demonstrate that under a fixed β1 and β2,

the memory effect for both Adam and RMSprop diminishes and the continuous-time limit of the two

algorithms follows the dynamics of signGD flow. In this work, the deep learning models on which

we observe the robustness difference are trained using Adam and RMSProp, with the exception of

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 40

Section 4.4, where we focus on signGD, a memory-free version of Adam and RMSProp, and GD to

help us understand the robustness gap between models trained using SGD and adaptive gradient

methods in a simple setting.

4.2.2 Frequency Representation of Signals

Natural signals are highly structured (Schwartz et al., 2001). They often consist of statistically

significant (or insignificant) patterns with a large amount of predictability (or redundancy). Such a

phenomenon has been observed in both natural images (Ruderman, 1994; Simoncelli, 1997; Huang

et al., 1999) and natural audio signals (McAulay et al., 1986; Attias et al., 1996; Turner, 2010). To

understand the structure of signals and identify patterns from them, one technique is to decompose

the signal into multiples of “harmonics” or “overtones”: a superposition of periodic waves with

varying amplitudes and in varying phases. For example, Fourier (1822) first proposed to analyze

complicated heat equations using well-understood trigonometric functions, a method now called the

Fourier transformation. This new representation allows us to precisely study the structure and the

magnitude of any repeating patterns presented in the original waveform. For the understanding of

digital signals, such a process is called discrete-time signal processing (Oppenheim et al., 2001).

Many discrete harmonic transformations exist, such as the discrete Fourier transform, the discrete

cosine transform (DCT) (Ahmed et al., 1974) and the wavelet transform (Mallat, 1999). The analysis

in this work utilizes the type-II DCT, but other techniques can be applied as well and we expect

similar results.

Concretely, consider a d-dimensional signal x ∈ Rd in the spatial domain. The same signal can

be alternatively represented as a discrete sum of amplitudes multiplied by its cosine harmonics:

x̃k =

d−1∑
j=0

xj cos

[
π

d

(
j +

1

2

)
k

]
,

for k = 0, ..., d−1, where the transformed signal x̃ has a frequency-domain representation.1 Because

DCT is linear, it can be carried out using a matrix operation, i.e., x̃ = Cx, where C is a d× d DCT

transformation matrix with values specified by

C
(d)
kj =

√
αk

d
cos

[
π

d

(
j +

1

2

)
k

]
, (4.4)

where α0 = 1 and αk = 2 for k > 0. In particular, x̃ can be written as a matrix-vector product

between the transformation matrix C and the column vector x:


x̃0

x̃1

...

x̃d−1

 =



√
1
d

√
1
d · · ·

√
1
d√

2
d cos π(2(0)+1)(1)

2d

√
2
d cos π(2(1)+1)(1)

2d · · ·
√

2
d cos π(2(d−1)+1)(1)

2d

...
...

...
...√

2
d cos π(2(0)+1)(d−1)

2d

√
2
d cos π(2(1)+1)(d−1)

2d · · ·
√

2
d cos π(2(d−1)+1)(d−1)

2d




x0

x1

...

xd−1

 .

Notice that C is a real orthogonal matrix whose rows consists of periodic cosine bases with

increasing frequencies. Therefore, the absolute value of x̃ at a particular dimension indicates the

1Indices range from 0 to d− 1, as zero-frequency is commonly used to refer to a signal with a constant everywhere.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 41

magnitudes of the corresponding basis function, and a higher dimension in x̃ means the basis function

is of higher frequency. Another important property of DCT is its invertibility. That is, signals in

the frequency domain can be converted back to the spatial-temporal domain via the inverse DCT

(iDCT):

x = C−1x̃ = C⊤x̃.

In the example above, we discussed one-dimensional DCT which is applied to vectors and is

used in the linear analysis in Section 4.4. Transformations on images require two-dimensional DCT

and can be done using x̃ = CxC⊤, where x, x̃ ∈ Rd×d, and C is defined in (4.4); and the inverse

two-dimensional DCT is x = C⊤x̃C. For more details on two-dimensional DCT, we refer the reader

to Pennebaker et al. (1992).

Previous work analyzes the sensitivity of neural network classifiers by examining the frequency

characteristics of various types of perturbations, with an emphasis on understanding how data

augmentation affects the robustness of the model (Dong et al., 2019a). In our work, the frequency

interpretation of signals is an integral part of understanding the robustness difference between models

trained by SGD and adaptive gradient methods. This perspective allows us to study the structure

of complex signals using well-understood periodic basis functions such as cosines and understand

the energy distribution of signals by examining the amplitude of the basis function. In particular,

the energy of a discrete signal x is defined as E(x) =
∑d−1

i=0 |xi|2, and by Parseval’s theorem, is

equivalent to the sum of squared amplitudes across all the bases, i.e., E(x) = E(x̃) =
∑d−1

i=0 |x̃i|2.

Natural images are primarily made of low-frequency signals2: a high concentration of energy

in the low-frequency harmonics renders the amplitude of the higher-frequency harmonics almost

negligible (Tolhurst et al., 1992; Schaaf et al., 1996).

In Figure 4.2, we visualize the energy distribution for CIFAR-100 and Imagenette, with each

dataset illustrated through four plots. The (i, j) coordinate in the first plot indicates the average

amplitude, 1
N

∑N
n=1 |x̃n;(i,j)|, for the (i, j)-th basis across all N training images, where x̃n repre-

sents the DCT transformation of the n-th image, xn, and x̃n;(i,j) represents the amplitude of the

(i, j)-th basis in the n-th sample. The second plot focuses on the diagonal elements of the first,{
1
N

∑N
n=1 |x̃n;(i,i)|

}
i=0,...,d−1

. The two plots are then drawn on a logarithmic scale to highlight the

pronounced concentration of energy around the low-frequency harmonics, while the amplitudes for

higher-frequency harmonics diminish significantly. Additional figures for other datasets can be found

in Appendix 4.E.

Moreover, we show in Section 4.3.1 that there exist frequencies in natural datasets, which if

removed from the training data, do not affect the standard generalization performance of the model.

Based on this observation, in Section 4.4, we construct a synthetic dataset that mimics the charac-

teristics of natural signals, and it allows us to study the learning dynamics of various optimization

algorithms in a controlled setting.

4.3 A Claim on How Models Use Irrelevant Frequencies

Why do models trained by different optimization algorithms behave similarly in the standard setting

where the training and the test inputs are i.i.d., while they perform drastically differently when

2We will always use the term “high” or “low” frequency on a relative scale.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 42

0 10 20 30

0

10

20

30

Spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

0

5

10

15

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20 30

0

10

20

30

Log scale spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

4

2

0

2

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

5

10

15

4

2

0

2

a. CIFAR-100

0 100 200

0

50

100

150

200

Spectral energy distribution
 averaged over all training inputs

0 50 100 150 200
(i, i)-th DCT Frequency Basis

0

20

40

60

80
M

ag
ni

tu
de

 o
f s

pe
ct

ra
l e

ne
rg

y

0 100 200

0

50

100

150

200

Log scale spectral energy distribution
 averaged over all training inputs

0 50 100 150 200
(i, i)-th DCT Frequency Basis

4

2

0

2

4

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

20

40

60

80

4

2

0

2

4

b. Imagenette

Figure 4.2: Illustration of the spectral energy distribution in natural datasets. Distribution
of the spectral energy heavily concentrates at low frequencies and decays exponentially towards
higher frequencies.

faced with noisy or corrupted data? To answer this question, we first observe that there is irrelevant

information in the natural dataset (Observation I), and attenuating them from the training input

has negligible effects on the standard generalization of the model. This leads to our claim:

Claim 4.3.1. To optimize the standard training objective, models only need to learn how to correctly

use relevant information in the data. Their use of irrelevant information in the data, however, is

under-constrained and can lead to solutions sensitive to perturbations.

Because of this, by targeting the perturbations toward the subset of the signal that contains

irrelevant information, we notice that models trained by different algorithms exhibit very different

performance changes (Observation II).

4.3.1 Observation I: Irrelevant Frequencies in Natural Signals

Previous work demonstrated that the magnitude of the frequency components in natural images

decreases as the frequency increases (Ruderman, 1994; Wainwright et al., 1999), which we have

observed in Figure 4.2. The spectral sensitivity of the human eyes is limited (Gross, 2005), so

patterns with low magnitudes and high frequencies are not important from the perspective of human

observers, as they appear to us as nearly invisible and unintuitive information in the scene (Schwartz

et al., 2001; Schwartz, 2004). For machines, image-processing methods have long exploited the fact

that most of the content-defining information in natural images is represented in low frequencies,

and the high-frequency signal is redundant, irrelevant, and is often associated with noise (Wallace,

1991; Guo et al., 2020a; Sharma et al., 2019).

Similarly, the notion of irrelevant frequencies also exists when training a neural network classifier.

One way to illustrate this is by taking a supervised learning task, removing the irrelevant information

from the training input, and then assessing the model’s performance using the original test data.

We observe that when modifying the training dataset by removing subsets of the signal with low

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 43

0 10 30 50 70 90
p: percentage of DCT bases removed based on its magnitude

80

90

Ac
cu

ra
cy

 o
n

th
e

 o

rig
in

al
 te

st
 se

t (
%

)
MNIST
FashionMNIST
CIFAR10
CIFAR100
SVHN
Caltech101
Imagenette

a. Parts of the signal with low spectral energy is irrelevant.

0 10 30 50 70 90
p: percentage of DCT bases removed based on its frequency

80

85

90

95

Ac
cu

ra
cy

 o
n

th
e

 o

rig
in

al
 te

st
 se

t (
%

)

b. Parts of the signal with high-frequency basis is irrelevant.

Figure 4.3: Irrelevant frequencies exist in natural datasets. Accuracy on the original test
set remains high when the training inputs are modified by removing parts of the signal with a) low
spectrum energy and b) high frequencies. Stars represent test accuracy on models trained using the
original training input. In setting a), training images are filtered based on the magnitude of the DCT
basis. Specifically, parts of the image with DCT bases that have a magnitude in the bottom p

100 -th
percentile are removed, so a large p means more information is discarded. In setting b), training
images are low-pass filtered, and p denotes the percentage of the high-frequency components that
are discarded in the training data. We explain the formulation of the two settings in Appendix 4.C.
Examples of the modified inputs are included in Appendix 4.E.

spectral energy (Figure 4.3a) or high frequencies (Figure 4.3b), there is a negligible effect on models’

classification accuracy on the original test data. In Figure 4.4, we illustrate the filtering process in

both scenarios. The image remains nearly identical to the original, even with 90% of the DCT bases

removed. Note that our filtering is different from JPEG compression (Pennebaker et al., 1992) in

how it handles irrelevant frequencies. JPEG removes high-frequency components locally, introducing

block-like artifacts in the form of class-irrelevant, high-frequency DCT bases. In contrast, our

filtering is a global operation that does not introduce such compression artifacts. For a comprehensive

explanation of the modifications applied to the images, refer to Appendix 4.C. Further, Appendix 4.E

contains additional visualizations of the modified images across various datasets.

Results in Figure 4.3 shows that in both settings after reducing more than half of the DCT

basis vectors to zeroes in the training data, the model’s generalization ability remains strong. This

observation suggests there is a considerable amount of irrelevant information in naturally occurring

data from the perspective of a neural network classifier, and such information is often featured with

low spectrum energy or lives at the high end of the frequency spectrum.

This observation leads to the first part of Claim 4.3.1. That is, models only need to learn how to

correctly use the crucial class-defining information from the training data to optimize the training

objective. On the other hand, the extent to which they utilize irrelevant information in the data

is not well-regulated. This can be problematic and lead to solutions sensitive to perturbations.

In Section 4.4, we validate Claim 4.3.1 using a linear regression analysis with a synthetic dataset

that contains irrelevant information. We demonstrate there exist multiple optima of the training

objective and those solutions can all correctly use the relevant information in the data, but the way

they exclude irrelevant information from computing the output is different. Specifically, a robust

model disregards irrelevant information by assigning a weight of zero to it, but a non-robust model

has certain non-zero weights which, when combined with the irrelevant information in the input,

yield a net-zero effect in the output. In this case, although the two models are indistinguishable

under the original training objective, the non-robust model will experience a reduction in model

performance should this irrelevant information become corrupted at test time.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 44

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.000

0.005

0.010

0.015

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Examples of filtered images used in Observation I. (Imagenette) We use a

threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of

DCT basis and their frequency basis. The threshold value is the percentage of the DCT basis
vectors that are removed from the image. We show images modified by removing DCT basis vectors
whose magnitudes are in the bottom threshold percentage (row 1), the differences between the
modified images and the original image (row 2), the binary mask used to remove the DCT basis:
black means removed (row 3), images modified by removing high-frequency DCT basis vectors (row
4), the differences between the modified images and the original image (row 5) and the binary mask
used to remove the DCT basis: black means removed (row 6). Notice that the masks in row 6 only
depends on the dimension of the images, whereas the masks in row 3 differs from images to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 45

Dividing the DCT frequency
spectrum into ten bands x(0) x(1)

. . .

x(8) x(9)

0
1
2
3
4
5
6
7
8
9

Figure 4.5: Visualization of the band-limited Gaussian perturbations. The DCT spectrum
is divided into ten equally sized bands to generate band-limited Gaussian perturbations. Denote
them by using ∆x(i), where i ∈ {0, 1, ..., 9}. The frequency represented in the spectrum plot increases
from the top-left (lowest frequency) to the bottom-right corner (highest frequency). Therefore, as
the band moves towards higher frequencies, perturbations exhibit more high-frequency checkerboard
patterns.

4.3.2 Observation II: Model Robustness along Irrelevant Frequencies

Let us now focus on the second part of the claim. If models’ responses to perturbations along the

irrelevant frequencies explain their robustness difference, then we should expect a similar accuracy

drop between models when perturbations are along relevant frequencies, but a much larger accuracy

drop on less robust models when test inputs are perturbed along irrelevant frequencies. Consider the

robustness of the models when the test data are corrupted with Gaussian noise: the perturbation

along each spatial dimension is i.i.d and drawn from a zero-mean Gaussian distribution with finite

variance. This type of noise is commonly referred to as the additive white Gaussian noise, where

white refers to the property that the noise has uniform power across the frequency spectrum (Diebold,

1998). Nevertheless, the previous discussion suggests that noise along different frequencies does not

have an equal impact on the models’ output. To verify this, we assess the impact on model accuracy

by perturbing only specific frequency ranges of the test inputs with band-limited Gaussian noise.

To construct the band-limited Gaussian noise, we first follow the previous work (Wang et al.,

2020a) to group DCT basis vectors based on their distance to the 0-frequency DC term and divide

the entire DCT spectrum into ten bands where each band occupies the same number of DCT

bases. This is to ensure an identical ℓ2 norm among all the perturbations. Denote the binary

mask of the i-th band by using M (i) ∈ {0, 1}d×d
, its corresponding band-limited Gaussian noise is

∆x(i) = C⊤(M (i) ⊙ δ)C, where δ ∼ N (0, σ2Id×d) and C is the DCT transformation matrix defined

in (4.4). Figure 4.5 illustrates how the frequency bases are grouped into ten equally sized bands and

examples of the band-limited Gaussian noise. Denote the perturbations by using ∆x(i), with ∆x(0)

and ∆x(9) representing the lowest and the highest band, respectively. To investigate the effect of

the perturbation ∆x(i) on the models, we measure the change in classification accuracy when the

test inputs are perturbed by ∆x(i):

1

N

N∑
n=1

I {F (Xn) = Yn} −
1

NK

N∑
n=1

K∑
k=1

I
{
F (Xn + ∆x

(i)
k) = Yn

}
, (4.5)

where F is a neural network classifier, {(Xn, Yn)}Nn=1 denotes the test dataset, and each input Xn

is perturbed by K = 10 i.i.d. noise samples ∆x
(i)
k . The same K perturbations are applied across all

inputs. It is important to realize in (4.5) that the additive noise ∆x is applied to the spatial signal

X, although we are limiting the frequency band of the noise.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 46

0 2 4 6 8
Perturbed frequency band (r)

0

2

4

6

8

10

12
Ac

cu
ra

cy
 c

ha
ng

e
un

de
r

 b
an

d-
lim

ite
d

pe
rtu

rb
at

io
ns

 (%
)

CIFAR100: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

CIFAR100: Freq contribution to loss change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ac
cu

ra
cy

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns
 (%

)

Imagenette: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0.00

0.05

0.10

0.15

0.20

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

Imagenette: Freq contribution to loss change
SGD
Adam
RMSProp

Figure 4.6: The effect of band-limited Gaussian perturbations on the model. Perturbations
from the lowest band, i.e., ∆x(0), have a similar effect on all the models, despite being trained by
different algorithms and exhibiting different robustness properties. On the other hand, models’
responses vary significantly when the perturbation focuses on higher frequency bands. The results
are averaged over three independently initialized and trained models, and the shaded area indicates
the standard error among the three models.

Figure 4.6 demonstrates how the classification accuracy degrades under different band-limited

Gaussian noises on CIFAR-100 and Imagenette; and results on the other datasets are included in

Appendix 4.E. First, notice that the perturbation from the lowest band ∆x(0) has a similar impact

on all the models regardless of the algorithm they are trained by. There is however a noticeable

difference in how models trained by SGD and adaptive gradient methods respond to perturbations

from higher frequency bands. On models trained by SGD, the flattened curve implies that the

effect of high-frequency perturbations on the generalization performance quickly diminishes to zero,

suggesting that models are not sensitive to changes along the dimensions of irrelevant frequencies.

Contrarily on models trained by the two adaptive gradient methods, we observe a difference in the

way models respond to perturbations of higher frequency bands. On CIFAR-100, for example, the

two models are highly vulnerable to Gaussian perturbations from bands 5 to 7. This observation

shows that when models, during their training phase, do not have mechanisms in place to limit

their use of irrelevant frequencies, their performance can be compromised if data along irrelevant

frequencies become corrupted at test time.

We also observe that models’ responses to high-frequency Gaussian perturbations varies among

datasets. This can be attributed to the fact that (ir-)relevant frequencies are most likely going to

be a unique characteristic for a particular dataset. We do not expect a dataset that solely consists

of hand-written digits to share the same (ir-)relevant frequencies as one that consists of real-world

objects. Moreover, the dimension (image resolution) of inputs for a given dataset matters, as a

higher dimension potentially can allow more irrelevant frequencies. Therefore, we emphasize that

the goal of our work is not to identify the exact (ir-)relevant frequencies among datasets. Rather,

the analysis is built on the presence of irrelevant frequencies in the dataset, especially towards the

higher end of the frequency spectrum, and how models differ in their robustness when trained by

different algorithms. In the next section, we investigate the reason for such a robustness difference

by studying how the irrelevant frequencies affect the learning dynamics of GD and signGD under a

synthetic linear regression task.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 47

4.4 Linear Regression Analysis with an Over-parameterized

Model

In this section, we study the learning dynamics of GD and signGD on least squares regression

with linear models to understand why models trained using the two algorithms have the same

standard generalization performance but exhibit different robustness against perturbations. On a

synthetic dataset that emulates the energy distribution of natural datasets in the frequency domain,

we design a learning task that has multiple optima for the standard population risk, each with a

different adversarial risk. We analyze the weight adaptation under GD and signGD in both spatial

and frequency domains and show that training with signGD can result in larger weights associated

with irrelevant frequencies, resulting in models with a higher adversarial risk. Our result verifies

Claim 4.3.1. We report the main results here and defer the full derivations to Appendix 4.D.

4.4.1 Problem Setup

Consider a linear model f(x,w) = ⟨w , x ⟩ with x,w ∈ Rd, where w and x are the weight and

the signal represented in the spatial domain, respectively. Since the DCT transformation matrix C

is an orthogonal matrix, with rows and columns forming unit vectors (and thus orthonormal), an

alternative way to represent this model is:

f(x,w) = ⟨w , x ⟩ = w⊤x = w⊤C⊤Cx = ⟨ w̃ , x̃ ⟩ = f(x̃, w̃),

where w̃ and x̃ are the exact same weight and signal but are now represented in the frequency

domain. This means that for linear models, computing the output of the model can be carried out

in either domain as long as we use the matching representation of the signal and the weight. The

goal of the linear analysis is to study the learning dynamics of different algorithms in a synthetic and

controlled environment where we can clearly define the frequency-domain signal-target (ir)relevance

to help understand the behavior of models in more complex settings. For this reason, let w̃∗ denote

the frequency-domain representation of the true model that is used to interact with the input x̃ and

generate the target: y = x̃⊤w̃∗, where w̃∗ = (w̃∗
0 , w̃

∗
2 , . . . , w̃

∗
d−1)⊤. We consider the squared error

pointwise loss, which can be equally formulated in both domains:

ℓ(x, y;w) =
1

2
|f(x,w)− y|2

=
1

2
|⟨x , w ⟩ − ⟨x , w∗ ⟩|2

and
ℓ(x̃, y; w̃) =

1

2
|f(x̃, w̃)− y|2

=
1

2
|⟨ x̃ , w̃ ⟩ − ⟨ x̃ , w̃∗ ⟩|2 .

Denote the error between the learned weight and the true weight at iteration t by e(t) = w(t)−w∗,

and the standard risk by Rs(w) = E [ℓ(X,Y ;w)]. In a similar way, those terms can be represented

in the frequency domain as ẽ(t) = w̃(t) − w̃∗ and Rs(w̃) = E
[
ℓ(X̃, Y ; w̃)

]
. Now we are ready to

explain the design philosophy behind the synthetic dataset, the structure of the true model w̃∗, and

particularly, with regard to robustness, the ideal model that minimizes the effect of perturbations.

Suppose that X̃ follows a Gaussian distribution N (µ̃, Σ̃). For analytical tractability, we consider

µ̃ = 0 and a diagonal structure of Σ̃, i.e., Σ̃ = diag(σ̃2
0 , ..., σ̃

2
d−1). This implies that in the spatial

domain, X follows a Gaussian distribution N (0,Σ) where Σ = C⊤Σ̃C. In Appendix 4.D.1, we

provide examples of the spatial-domain structure of the data, where we define the distribution

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 48

directly in the frequency domain. In Section 4.3, we demonstrate that natural datasets exhibit a

particular energy profile where signals contain irrelevant information represented by high-frequency

and low-amplitude waves. To emulate this setting with a synthetic dataset, we define frequencies that

are (ir)relevant in generating the target. Let Iirrel ⊆ {1, 2, ..., d−1} and Irel = {0, 1, 2, ..., d−1}−Iirrel
denote the set of irrelevant and relevant frequencies, respectively. Recall that the goal is to make

high-frequency components of the dataset irrelevant, so we exclude the DC term (0 /∈ Iirrel) when

considering irrelevant frequencies, as it is the lowest frequency possible. Next, we specify the energy

distribution of the synthetic dataset. The expected energy of a random signal following such a

distribution is

E
[
E(X̃)

]
= E

[
d−1∑
i=0

|X̃i|2
]

=

d−1∑
i=0

E
[
X̃2

i

]
=

d−1∑
i=0

σ̃2
i ,

where X̃ is defined earlier in Section 4.2.2. We assume that σ̃2
i = 0 if i ∈ Iirrel, meaning the irrelevant

frequencies of the data from the synthetic dataset have zero energy contributions. The purpose of

this is to imitate the behavior of real-world datasets, where the high-frequency components have a

negligible impact on the overall energy of the signal.

To see how having irrelevant frequencies affect the structure of the true model, notice that the

definition of the synthetic dataset implies X̃i = 0 for all i ∈ Iirrel. This means that the true

target value does not depend on those irrelevant frequencies. Clearly, this linear model is over-

parameterized because one only needs to specify w̃∗
i for all i ∈ Irel to establish the signal-target

relationship.

The objective of the standard risk with such a synthetic dataset is not strictly convex, i.e.,

there are multiple minimizers with zero standard risk, as the value of w̃∗
i for all i ∈ Iirrel has no

impact on the model output. For clarity, let us define W̃∗ = { w̃∗ : Rs(w̃
∗) = 0 } as the set that

includes all standard risk minimizers. Having multiple standard risk minimizers is the result of over-

parametrization; however, there is a unique solution that achieves zero standard risk and makes the

model immune to any perturbations parallel to the directions of the irrelevant frequencies, and it

corresponds to having zero weight at irrelevant frequencies: w̃∗
i = 0 for all i ∈ Iirrel. Define such a

robust standard risk minimizer as w̃R ∈ W̃∗, we have

w̃R
i ≜

{
w̃∗

i for all i ∈ Irel
0 otherwise.

(4.6)

Note that we use w̃∗ to denote any arbitrary standard minimizers in W̃∗. To see why w̃R is the most

robust standard minimizer, we introduce the adversarial risk to capture the worst-case performance

of the model under an ℓ2-constrained perturbation. Similar to the squared error loss, the adversarial

risk can also be equally formulated in both domains:

Ra(w) ≜ E(X,Y)

[
max

||∆x||2≤ϵ
ℓ(X + ∆x, Y ;w)

]
and Ra(w̃) ≜ E(X̃,Y)

[
max

||∆x̃||2≤ϵ
ℓ(X̃ + ∆x̃, Y ; w̃)

]
,

where the ℓ2-constraint with a size of ϵ has an equivalent effect in both domains, as guaranteed by

Parseval’s theorem. To understand the adversarial risk from a frequency-domain perspective, let us

focus on Ra(w̃):

Ra(w̃) = EX̃

[
max

||∆x̃||2≤ϵ

1

2

∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ⟨∆x̃ , w̃ ⟩
∣∣∣2], (4.7)

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 49

where we focus on the expectation over X̃, as Y is replaced with
〈
X̃ , w̃∗

〉
. Notice that the

maximization is inside the expectation. This means that we are finding a separate perturbation for

each input. Therefore, the maximizer, ∆x̃∗, of a given X̃ within the expectation in (4.7) is

∆x̃∗ ≜ arg max
||∆x̃||2≤ϵ

1

2

∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ⟨∆x̃ , w̃ ⟩
∣∣∣2 = ϵ sign

[〈
X̃ , w̃ − w̃∗

〉] w̃

||w̃||2
. (4.8)

Now knowing the worst-case perturbation to any X̃, we can continue the derivation in (4.7) with

Ra(w̃) =
1

2
EX̃

[∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ϵ sign[
〈
X̃ , w̃ − w̃∗

〉
] ∥w̃∥2

∣∣∣2]
=

1

2

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i)2 + ϵ

√
2

π

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i)2 ∥w̃∥2 +
ϵ2

2
∥w̃∥22 . (4.9)

Finding the exact minimizer to (4.9) is not only more involved but also beyond the scope of this

chapter. The primary objective here is to understand the robustness properties of solutions obtained

by minimizing the standard risk. For an arbitrary standard risk minimizer w̃∗ from W̃∗, we can

evaluate (4.9) at w̃∗ and obtain its the adversarial risk as

Ra(w̃∗) =
ϵ2

2
||w̃∗||22, (4.10)

where the first two terms in (4.9) become zero at any fixed standard risk minimizer. This shows

that the robustness of the standard risk minimizers against ℓ2-bounded perturbations is inversely

proportional to the norm of the linear model. That is, a smaller norm implies better robustness.

Recall that when evaluating the standard risk of the model, the weights associated with irrelevant

frequencies do not matter, since they are never used in computing the output of the model. On the

contrary, the ||w̃∗||22 term in (4.10) implies that those weights matter when considering the robustness

of the model under perturbations. It is not difficult to see that the minimum adversarial risk can

be achieved on a unique standard risk minimizer w̃R (4.6).

Therefore, in the over-parameterized linear regression setting, a standard risk minimizer with a

minimum norm is preferred when considering the robustness of the model, and a model with zero

weight at irrelevant frequencies is the most robust solution among the standard risk minimizers.

With this example, we verify Claim 4.3.1. While standard risk minimizers can correctly use the

relevant information of the data, their use of irrelevant information is under-constrained. This can

result in significant weight assigned to irrelevant frequencies, making models more susceptible to

perturbations.

Next, we study the learning dynamics of GD and signGD and demonstrate that the solutions

found by GD and signGD differ in the weight of the irrelevant frequencies. This causes the solutions

found by the two algorithms to have a similar standard population risk, but behave very differently

under perturbations.

4.4.2 Analysis on the Learning Dynamics of GD and signGD

We now analyze the weight adaptation of a linear model under GD and signGD, and experimentally

verify our results. Our analysis shows that for the over-parameterized linear model, GD finds

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 50

solutions with a standard risk of exactly zero, and signGD finds solutions with a standard risk close

to zero. However, they have different robustness properties. With irrelevant frequencies present in

the data distribution, GD is more likely to converge to a solution that is less sensitive to perturbations

along the direction of irrelevant frequencies, whereas signGD is more likely to converge to solutions

that are more prone to such perturbations.

GD Dynamics

Let us start with GD in the spatial domain. Suppose that we initialize the weights in the spatial

domain as w(0) = W ∼ N(0,ΣW), where ΣW ∈ Rd×d. Similar to how both X̃ and X follow a

Gaussian distribution, the frequency representation of the initialized weight also follows a Gaussian

distribution: w̃(0) = W̃ ∼ N (0, Σ̃W) where Σ̃W = CΣWC⊤. To train the model, we use GD on the

population risk:

w(t + 1)← w(t)− η∇wRs(w(t)).

The gradient computed using the population risk is ∇wRs(w(t)) = E
[
XX⊤] e(t) = Σe(t), where

e(t) denotes the error between the current weight and the optimal weight. Using this, the learning

dynamics of GD in the spatial domain is given by:

e(t + 1) = w(t + 1)− w∗

= w(t)− η∇wRs(w(t))− w∗

= w(t)− w∗ − ηΣe(t)

= e(t)− ηΣe(t)

= (I − ηΣ)e(t)

= (I − ηΣ)t+1e(0). (4.11)

This shows that the learned weight converges to the optimal weight w∗ at a rate depending on Σ.

To see the GD dynamics in the frequency domain, we can simply perform DCT on both sides of

(4.11):

ẽ(t + 1) = C(I − ηΣ)t+1e(0)

= C(I − ηΣ)t+1C⊤ẽ(0)

= C(I − ηΣ)tC⊤C(I − ηΣ)C⊤ẽ(0)

= C(I − ηΣ)t−1C⊤C(I − ηΣ)C⊤C(I − ηΣ)C⊤ẽ(0)

=
[
C(I − ηΣ)C⊤]t+1

ẽ(0)

= (I − ηCΣC⊤)t+1ẽ(0)

= (I − ηΣ̃)t+1ẽ(0), (4.12)

where Σ̃ is the covariance of x̃. It is easy to see that no weight adaptation happens for the irrelevant

frequencies because σ̃2
i = 0 for all i ∈ Iirrel. As Σ̃ is diagonal, choosing the learning rate η such that

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 51

∣∣∣1− η maxi∈{0,...,d−1} Σ̃ii

∣∣∣ < 1, we get that the asymptotic solution is

w̃GD
i ≜ lim

t→∞
w̃i(t) =

{
w̃∗

i for all i ∈ Irel
w̃i(0) otherwise.

That is, the initial random weights at the irrelevant frequencies do not change. Using (4.10), we

have

Ra(w̃GD) =
ϵ2

2
||w̃GD||22 =

ϵ2

2

∑
i∈Irel

w̃∗2
i +

∑
j∈Iirrel

w̃j(0)2

 . (4.13)

Comparing the standard risk minimizer found by GD with the robust standard risk minimizer in

(4.6), we notice that the GD solution is not the most robust among all standard risk minimizers, as

it is sensitive to perturbations along irrelevant frequencies. Suppose that the initialized weight in

the frequency domain is randomly sampled from N (0, σ2Id×d), and the signal-target relationship is

determined by a handful of relevant frequencies. Taking the expectation of (4.13) over the randomly

initialized weight, we have Ew̃(0)

[
Ra(w̃GD)

]
≈ O(ϵ2dσ2), so the adversarial risk can be quite signifi-

cant when the difference between relevant and irrelevant frequencies is large, i.e., |Irel| ≪ |Iirrel| ≈ d.

A similar phenomenon, where adversarial risk increases with large d, was observed in the motivating

example of SOAR introduced in Section 3.2.

This example shows that the GD solution is sensitive to initialization. Because there is no

mechanism in place to actively ensure that the weights associated with these irrelevant frequencies

become zero, GD is not forcing the initial weights to go to zero at those frequencies. One solution

is to include the weight norm as a penalty term along with the original optimization objective, but

this can result in learning a biased solution. Another simple fix is to initialize the weight at exactly

0. This robustifies the GD solution by initializing those irrelevant weights at the most robust state.

SignGD Dynamics

Adaptive gradient algorithms like Adam and RMSProp utilize historical gradient information as

a momentum mechanism for updating model parameters, thereby expediting the learning process.

However, it is important to note that their acceleration is not solely attributable to this feature,

nor is their adaptiveness limited to it. In (4.3), we have demonstrated how signGD, a memory-free

version of Adam and RMSProp, can adaptively adjust the update using a coordinate-wise learning

rate. Although signGD is not a suitable choice for training DNNs (Riedmiller et al., 1993; Ma et al.,

2022b), examining its behavior can provide insights into the learning dynamics of other adaptive

gradient methods (Karimi et al., 2016; Balles et al., 2018; Moulay et al., 2019). Furthermore,

later in this section, we empirically demonstrate that signGD serves as a suitable alternative for

understanding the learning dynamics of Adam and RMSProp.

Again, let us start with signGD in the spatial domain. The update rule using the population

risk takes the sign of the gradient computed using the population risk

w(t + 1)← w(t)− η sign[∇wRs(w)],

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 52

and its learning dynamics in the spatial domain is given by

e(t + 1) = w(t + 1)− w∗

= w(t)− η sign[∇wRs(w)]− w∗

= e(t)− η sign[Σe(t)]. (4.14)

Unlike the GD dynamics in (4.11), (4.14) shows that the behavior of signGD depends on the sign of

Σe(t), and this means that when |[Σe(t)]i| ≪ 1, training using signGD can accelerate the learning

along the i-th dimension. Although we can obtain Σ from Σ = C⊤Σ̃C, the structure of Σ is subject

to variation based on Σ̃, so it is difficult to find an analytical solution for the dynamics of the model

trained under signGD, such as (4.11) where we have a closed form for e(t) as a function of e(0) for

models trained under GD. This means that analyzing the signGD dynamics is limited to studying

its step-by-step update based on the sign of the entries in Σe(t).

The signGD learning dynamics in the frequency domain can be obtained by taking the DCT

transformation on both sides of (4.14):

ẽ(t + 1) = ẽ(t)− ηC sign[Σe(t)]

= ẽ(t)− ηC sign[C⊤Σ̃CC⊤ẽ(t)]

= ẽ(t)− ηC sign[C⊤Σ̃ẽ(t)]. (4.15)

where the error and the covariance terms inside of the sign are also transformed into their frequency-

domain representations. Equation 4.15 shows that analyzing the behavior of signGD in the frequency

domain requires knowing the sign of the entries in C⊤Σ̃ẽ(t). This term can be understood as an

inverse DCT transformation of Σ̃ẽ(t), and with a diagonal structure of Σ̃, we know that Σ̃ẽ(t) =[
σ̃2
0 , ..., σ̃

2
d−1

]⊤⊙ ẽ(t). However, similar to the situation in (4.14), the sign of the entries in C⊤Σ̃ẽ(t)

is dependent on ẽ(t) at different steps, so obtaining an analytical solution for the frequency-domain

dynamics is also challenging.

In both (4.14) and (4.15), we see that understanding the signGD dynamics for any general Σ̃ can

be complicated. Thus, we focus on a structure of Σ̃ that simplifies the analysis but still allows us

to understand why training with signGD results in vulnerable models. In particular, we consider a

data distribution where X̃ ∼ N (µ̃ = 0, Σ̃ = diag
{
σ̃2
0 , σ̃

2
1 , 0

}
). This definition implies that the data

distribution contains irrelevant information at the highest frequency basis and we have X̃2 = 0 for

all data points.

Now, we continue with signGD learning dynamics in the frequency domain from (4.15). Let us

denote A(t) =
√
3
3 σ̃2

0 ẽ0(t) and B(t) =
√
2
2 σ̃2

1 ẽ1(t), and C = C(3) follows the DCT transformation

matrix defined in (4.4). With some algebraic manipulation, we have

ẽ(t + 1) = ẽ(t)− η


√
3
3 (sign[A(t) + B(t)] + sign[A(t)] + sign[A(t)−B(t)])

√
2
2 (sign[A(t) + B(t)]− sign[A(t)−B(t)])

√
6
6 sign[A(t) + B(t)]−

√
6
3 sign[A(t)] +

√
6
6 sign[A(t)−B(t)]

 , (4.16)

and we include its complete derivation in Appendix 4.D. With this particular choice of Σ̃, (4.16)

shows that weight adaptation depends on the sign of three terms: A(t), A(t)+B(t) and A(t)−B(t).

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 53

In Table 4.9 of Appendix 4.D.2, we study the learning dynamics of signGD by analyzing all 27

sign combinations and their corresponding updates. We report the main results here and defer the

detailed analysis to Appendix 4.D.2.

With a constant learning rate of η, the asymptotic signGD solution converges to an O(η) neigh-

borhood of the standard risk minimizer:

lim sup
t→∞

|w̃i(t)− w̃∗
i | = O(η),

where i ∈ {0, 1}. In particular, we demonstrate that w̃0 oscillates in an O(η) neighborhood of w̃∗
0 .

Consider T as the first iteration after which w̃0 starts oscillating, and define ∆w̃2 as the sum of all

the updates in w̃2 up to the T -th iteration. The limiting behavior of w̃2 under signGD update is

lim sup
t→∞

|w̃2(t)| = |w̃2(T) + O(η)| = |w̃2(0) + ∆w̃2 + O(η)| ,

where w̃2(0) is the weight at initialization. This means that after T iterations, for all t′ > T , w̃2(t′)

stays in an O(η) neighborhood of w̃2(T). As such, we have the asymptotic solution found by signGD:

w̃signGD = [w̃∗
0 , w̃

∗
1 , w̃2(0) + ∆w̃2]⊤ + O(η).

From the perspective of training under the standard risk, the signGD solution is close to the

optimum. Specifically, its standard risk is

Rs(w̃
signGD) = E

[
ℓ(X̃, Y ; w̃signGD)

]
=

1

2
E
[〈

X̃ , w̃signGD − w̃∗
〉2

]
= O((σ̃2

0 + σ̃2
1)η2).

Note that the standard risk of the GD solution is exactly zero; and by choosing a sufficiently

small learning rate η, the standard risk of the signGD solution can also be close to zero as well.

However, their adversarial risks are very different. Specifically, the adversarial risk of the asymptotic

signGD solution is

Ra(w̃signGD) =
ϵ2

2
||w̃signGD||22 =

ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + (w̃2(0) + ∆w̃2)

2
}
. (4.17)

We can compare it with the adversarial risk of the asymptotic solution found by GD under the same

setup:

Ra(w̃GD) =
ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + w̃2(0)2

}
. (4.18)

It can be observed that the main difference between the two adversarial risks in (4.17) and (4.18)

arises from the difference in weights learned at the irrelevant frequency. Since their use of irrelevant

frequency in the data is under-constrained, neither algorithm can reduce w̃2 to zero, thereby neither

solution is the most robust standard risk minimizer. As discussed in Section 4.4.2, the GD solution

is sensitive to weight initialization. Before understanding the ∆w̃2 term in the signGD solution, we

first introduce two assumptions on the synthetic dataset that serve to better emulate the distribution

found in the natural dataset. Consider a dataset with a strong task-relevant correlation between

the relevant frequency component of the data and the target, a realistic scenario as we discussed

in Section 4.3.2. In this case, |w̃∗
0 | and |w̃∗

1 | can be large. Additionally, with a weight initialization

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 54

around zero, such as in methods by He et al., 2015 and Glorot et al., 2010, the initial error |ẽ0(0)| and

|ẽ1(0)| can be large and close to |w̃∗
0 | and |w̃∗

1 | when |w̃∗
0 | ≫ |w̃0(0)| and |w̃∗

1 | ≫ |w̃1(0)|. Moreover, we

have observed in Figure 4.2 that the distribution of spectral energy heavily concentrates at the low

end of the frequency spectrum and decays quickly towards higher frequencies. Since σ̃2
i is interpreted

as the expected energy of a random variable at the i-th frequency, it is reasonable to assume that
σ̃2
1

σ̃2
0
< 1

3 .

With the two assumptions, we demonstrate that ∆w̃2 is proportional to |w̃∗
0 | or |w̃∗

1 | depending

on the initialization of |A(0)| and |B(0)|. In particular, we have

|∆w̃2| ≈

{√
3C |w̃∗

0 | if |A(0)| < |B(0)|
3
√
2σ̃2

1

2σ̃2
0

C |w̃∗
1 | if |A(0)| > |B(0)| ,

where C ∈ [
√
6
6 ,

√
6
3]. To quantitatively understand the robustness difference between solutions

found by the two algorithms, we consider the ratio between the adversarial risk of the standard

risk minimizers found by GD (4.18) and signGD (4.17) with a three-dimensional input space. We

observe that the solution found by signGD is more sensitive to perturbations compared to the GD

solution:

Ra(w̃signGD)

Ra(w̃GD)
≈

1 + C3
w̃∗2

0

w̃∗2
0 +w̃∗2

1
if |A(0)| < |B(0)|

1 + C4
w̃∗2

1

w̃∗2
0 +w̃∗2

1
if |A(0)| > |B(0)| ,

(4.19)

where 1
2 ≤ C3 ≤ 2 and 3

4
σ̃4
1

σ̃4
0
≤ C4 ≤ 3

σ̃4
1

σ̃4
0
. Given that this ratio is always greater than 1, the linear

model obtained through GD is always more robust against ℓ2-bounded perturbations in comparison

to the model obtained from signGD.

Empirical Validation

To validate our analysis, in Figure 4.7 we create a three-dimensional dataset using (σ̃2
0 , σ̃

2
1 , σ̃

2
2) =

(0.01, 0.0025, 0), and (w̃∗
0 , w̃

∗
1 , w̃

∗
0) = (5, 10, 0), and compare the dynamics of the frequency-domain

weight error on models trained by GD, Adam, RMSProp, and signGD. All models are initialized

with the same weight and are trained using a fixed learning rate of 0.01. At each training iteration,

we sample 1000 data points and compute the gradient based on the sampled data. We want to clarify

that even though we analyze the weight update dynamics in both frequency and spatial domains,

the actual training still takes place in the spatial domain.

In (4.12), we show that the GD solution w̃GD
i (t) converges to w̃∗

i with a rate of 1−ησ̃2
i . Therefore,

when σ̃2
i is small, learning can be particularly slow for weights associated with the i-th frequency,

as shown in Figure 4.7a. On the other hand, notice in Table 4.9 in Appendix 4.D.2 that |ẽ0| gets

reduced by at least
√
3
3 regardless of the magnitude of σ̃2

0 for signGD. This means that the magnitude

of σ̃2
i does not directly affect the convergence speed. Instead, the relative magnitude between A(t)

and B(t) determines the frequency which receives priority during the learning process. As a result,

we observe an acceleration for models trained by signGD.

Next, we observe that the error trajectory for the model trained by signGD closely resembles the

one from the model trained by Adam for ẽ0 and ẽ1. In the analysis of signGD, we show that |ẽ2|
increases till |ẽ0| starts oscillating in O(η). Figure 4.7a shows that this pattern can be observed in

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 55

100 101 102 103 104 105

Training iteration (t)

0

1

2

3

4

5

|e0(t)|

GD
Adam
RMSProp
SignGD

100 101 102 103 104 105

Training iteration (t)

0

2

4

6

8

10

|e1(t)|

100 101 102 103 104 105

Training iteration (t)

0

1

2

3

4

5

|e2(t)|
|e2| grows till e0 begins
oscillating around 0
|e2| cannot be corrected

a. Dynamics of the error term

100 101 102 103 104 105

Training iteration (t)

0

2

4

6

s(t)

GD
Adam
RMSProp
SignGD

100 101 102 103 104 105

Training iteration (t)

0

50

100
123
141150

a(t)

b. The standard population risk Rs and the adversarial population risk Ra

Figure 4.7: Empirical validations on (a) the learning dynamics, (b) the standard and
adversarial population risk of linear models optimized under GD, Adam, RMSProp,
and signGD. We create a three-dimensional dataset created using (σ̃2

0 , σ̃
2
1 , σ̃

2
2) = (0.01, 0.0025, 0),

and (w̃∗
0 , w̃

∗
1 , w̃

∗
2) = (5, 10, 0). All models are initialized with the same weight (w̃0(0), w̃1(0), w̃2(0)) =

(0.01,−0.01, 0.02) and trained using a fixed learning rate of 0.01. Note that the iterations are plotted
on a logarithmic scale, which makes the initial changes appear smoother than they actually are. (a)
Dynamics of the error term. During the signGD training process, the error along the irrelevant
frequency grows until ẽ0 starts to oscillate around 0. In our example, the green highlighted areas
in the figure correspond to the iterations before ẽ0 starts to oscillate, and the red areas show that
the error along the irrelevant frequency cannot be corrected. (b) The standard population risk
and the adversarial population risk (ϵ =

√
2). We notice that despite all models reaching zero

standard population risk, their adversarial population risks are different. The adversarial population
risk of models trained by adaptive gradient methods is higher than the one from the model trained
by GD, indicating lower robustness.

models trained by Adam as well. This shows that signGD is a suitable alternative to understanding

the learning dynamics of models under the proposed linear regression task. For models trained by

GD, since there is no update on the weight associated with the irrelevant frequency, ẽ2 remains

at the initialized value throughout training. To demonstrate the weight adaptation under signGD,

we divide the training into two phases, as highlighted by two background colors. The green area

indicates that |ẽ0| decreases and |ẽ2| increases in the meanwhile. Once oscillation begins for |ẽ0|,
|ẽ2| can no longer be corrected. This behavior corresponds to the purple area in Figure 4.7a.

In Figure 4.7b, we compare the standard population risk and the adversarial population risk

of different models. We notice that despite all models reaching near zero standard population

risk, their adversarial population risk is different. In particular, the adversarial population risk of

models trained by adaptive gradient methods is higher than the one from the model trained by

GD, indicating lower robustness. Choosing ϵ =
√

2 in (4.10), the adversarial risk of those standard

risk minimizers is exactly the squared ℓ2 norm of the weight. With our choice of initialization, the

resulting |A(0)| and |B(0)| are 0.0289 and 0.0177 respectively. This means that the ratio between

the two adversarial risks is Ra(w̃
signGD)

Ra(w̃GD) ∈ [1.04, 1.15] according to (4.19), and this aligns with the

ratio of 1.146 obtained empirically from the experiments.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 56

This simple problem illustrates how the optimization algorithms and an over-parameterized

model might interact, and learning with signGD can lead to a solution that is more prone to pertur-

bations. In this section, we focus on analyzing the robustness of the solution from a frequency domain

perspective, that is, the behavior of w̃ with an input perturbation of ∆x̃. In Appendix 4.D.3, we

present a spatial interpretation of the result and demonstrate how signals with irrelevant frequencies

contain spatially redundant dimensions.

4.5 Connecting the Norm of Linear Models to the Lipschitz-

ness of Neural Networks

The takeaway from the over-parameterized linear regression analysis is that among all standard

risk minimizers, the minimum norm solution is the most robust one. That is, a smaller weight

norm implies better robustness. This suggests a connection between the weight norm and model

robustness. Nonetheless, the major limitation of the analysis is that it is designed for a linear model.

In this section, we generalize such a connection to the deep learning setting and verify it using the

robustness of neural networks trained by different algorithms.

A significant challenge is that the concept of weight norm, as defined for linear models, does

not directly apply to neural networks due to their hierarchical structure and non-linear activation

functions. Nonetheless, we can relate a network’s weights to its sensitivity to input perturbations,

forming a basis for analyzing robustness in neural networks.

Consider the ℓp vector norm, for all x1, x2 ∈ R, a function f is said to be Lipschitz continuous

if ||f(x1)− f(x2)||p ≤ L||x1 − x2||p, for some real-valued Lipschitz constant L ≥ 0.3 The Lipschitz

constant effectively quantifies the sensitivity of the function to changes in the input space.

Now, consider a single-layer ReLU-activated feedforward network with x ∈ Rd and W ∈ RD×d.

For an input perturbation of ∆x ∈ Rd constrained by the vector ℓp-norm, the maximum change in

the model output as measured by the same norm can be bounded using

∥ReLU (W (x + ∆x))− ReLU (Wx)∥p ≤ ∥W∆x∥p ≤ ∥W∥p ∥∆x∥p ,

where ∥W∥p denotes the vector ℓp-norm induced matrix norm of the weight W , which serves as the

Lipschitz constant for this single-layer model. This bound demonstrates how weight norms influence

sensitivity to input perturbations, linking them to robustness.

In the single-layer model example, its Lipschitz constant is exactly the matrix norm of the weight.

More generally, consider the feedforward neural network as a series of function compositions:

f(x) = (ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ1)(x),

where each ϕi is a linear operation, an activation function, or a pooling operation. A particularly

useful property of the Lipschitz function is that the composition of Lipschitz functions with Lipschitz

constant L1, L2, ..., LN w.r.t. the same norm is also Lipschitz with an upper-bound on the Lipschitz

constant L ≤ L1L2...LN . Denoting the Lipschitz constant of function f as L(f), we can establish

3Any value of L satisfying the Lipschitz condition is considered a valid Lipschitz constant. For the sake of clarity,
we will refer to the smallest (optimal) Lipschitz constant as L.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 57

Table 4.1: Comparing the upper bound on the Lipschitz constant and the averaged
robust accuracy of neural networks trained by SGD, Adam, and RMSProp. We follow
(Gouk et al., 2021) to compute the Lipschitz constants of each layer in isolation and multiply them
together to establish an upper bound on the constant of the entire network. Notice that across all
selected datasets, models trained by SGD have a considerably smaller upper bound compared to
models trained by Adam and RMSProp. In Figure 4.1, we demonstrate the robustness of the neural
networks under Gaussian noise, ℓ2 and ℓ∞ bounded adversarial perturbations. Here, we average the
accuracy across the perturbations and get a single score quantifying the model’s robustness. All
results are averaged over three independently initialized and trained models.

Dataset MNIST Fashion CIFAR-10 CIFAR-100 SVHN Caltech-101 Imagenette

∏l
i=1 L(ϕi)

SGD 3.80 3.83 26.81 40.41 22.65 18.53 23.99

Adam 5.75 8.12 28.70 41.87 30.45 26.20 28.55

RMSProp 6.21 5.11 37.75 41.71 28.31 45.84 27.11

Average
Robust Acc.

SGD 77.97% 77.95% 63.21% 55.65% 69.08% 71.42% 67.59%

Adam 65.64% 67.60% 57.71% 45.25% 65.60% 55.03% 58.86%

RMSProp 63.54% 71.34% 56.47% 47.55% 65.37% 53.16% 57.98%

an upper bound on the Lipschitz constant for the entire feedforward neural network using

L(f) ≤
l∏

i=1

L(ϕi). (4.20)

For a multi-layer neural network that comprises repeated layers of linear operation followed by

non-linear activation, this result allows us to upper bound the change in model output w.r.t. changes

in the input space by multiplying the operator norms of the weights. However, it is important to

note that (4.20) provides a loose upper bound, and computing the exact Lipschitz constant for a

neural network is NP-hard (Virmaux et al., 2018). Nonetheless, this approximation enables us to

draw meaningful connections between the weights and the robustness of neural networks.

Results in Section 4.4 indicate that linear models trained by signGD have larger weight norms,

indicating reduced robustness. Extending this to the deep learning setting, we expect neural networks

trained with Adam to have larger Lipschitz upper bounds, leading to less robust models, as illustrated

in Figure 4.1. To verify this, we follow the techniques in Gouk et al. (2021) and compute an

upper bound on the Lipschitz constant of the same neural networks trained by SGD, Adam, and

RMSProp in Figure 4.1. The results, presented in Table 4.1, confirm that models trained with SGD

consistently exhibit smaller Lipschitz upper bounds across all datasets and architectures compared

to those trained with the two adaptive gradient methods.

In Figure 4.1, we demonstrate the robustness of the neural networks under Gaussian noise, ℓ2 and

ℓ∞ bounded adversarial perturbations (Croce et al., 2020). In Table 4.1, we average the accuracy

across the perturbations and get a single score quantifying the model’s robustness. The results

clearly indicate that models trained with SGD are more robust than those trained with Adam and

RMSProp, consistent with their smaller Lipschitz constants and the observations from the linear

model analysis.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 58

4.6 Conclusions

In this chapter, we highlighted the robustness difference between models trained by SGD and adap-

tive gradient methods, particularly Adam and RMSProp. To understand this phenomenon, we

leveraged a frequency-domain analysis, and demonstrated that natural datasets contain frequencies

that are irrelevant to minimizing the standard training loss. Empirically, through a band-limited

perturbation analysis on neural networks trained on common vision datasets, we showed that models

trained by the adaptive gradient method utilize the statistics in the irrelevant frequency, and thus

they experience a huge drop in performance when the same statistics become corrupted. Analyti-

cally, on a synthetic linear regression task where the dataset was designed to contain target-irrelevant

frequencies, we showed that while both GD and signGD can find the solution with standard risks

close to zero, the adversarial risk of the asymptotic solution found by signGD can be larger than that

of GD. Such results from the linear analysis explained the observation in Figure 4.1 and suggested

that a smaller model parameters’ weight norms may indicate a larger model robustness. Finally, in

the deep learning setting, we showed that models trained by SGD have a noticeably smaller Lipschitz

constant than those trained by Adam and RMSProp.

4.6.1 Challenges and Limitations

Our work has some limitations. First, when conducting a theoretical analysis of various optimizers,

we opted for signGD as a simpler alternative to Adam and RMSProp. Second, our focus was

primarily on linear models. However, it is crucial to acknowledge that DNNs inherently possess

non-linear characteristics, which limit the depth of insights derived from linear models. Therefore,

one promising future direction is to incorporate tools such as neural tangent kernels (Jacot et al.,

2018), which provide a deeper understanding of network dynamics. Third, our analysis focuses

on optimization algorithms along with the standard objective function. We can also study the

effect of optimizer with alternative objectives that are designed to improve the robustness of the

model (Simon-Gabriel et al., 2019; Wen et al., 2020; Ma et al., 2020; Foret et al., 2021). For instance,

the effect of adversarial training using perturbations similar to the Fast Gradient Sign Method

(FGSM) under the linear regression setup has been studied in Chapter 3. In linear classification,

Wei et al. (2023) showed that minimizing the sharpness-aware loss (SAM) (Foret et al., 2021) can

lead to robust models. Another promising direction for future research is to analyze model robustness

by coupling various optimization algorithms with different optimization objectives.

Appendices

In the following appendices, we provide some auxiliary results that are omitted from the main body

of the chapter. The source code for this project can be found at https://github.com/averyma/

opt-robust. In Appendix 4.A, we first describe the data augmentation, the exact optimization

schedule, and the model architectures used to train the models. In Appendix 4.B, we describe

the complete generalization and robustness results in Table 4.3 and how they are used to generate

Figure 4.1. In Appendix 4.C, we discuss how the training inputs are modified when making the

observations in Section 4.3. In Appendix 4.D, we provide additional detail on the linear analysis

in Section 4.4. Finally, in Appendix 4.E, we provide additional figures including visualization of

https://github.com/averyma/opt-robust
https://github.com/averyma/opt-robust

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 59

the perturbed images, the modified images used in Section 4.3.1, and the frequency sensitivity

comparison in Section 4.3.2.

4.A Implementation Details

Data augmentation: In our chapter, we study how the presence of irrelevant information in the

dataset affects the robustness of the model when trained by different algorithms. We approach this

problem from a frequency-domain perspective. Specifically, we leverage the structure and energy

profile of the dataset in the frequency domain. While data augmentation methods are widely used

in training machine learning models to improve generalization and reduce overfitting, understanding

how those methods affect the datasets in the frequency domain requires additional analysis tailored

for each augmentation method. Therefore, on Fashion-MNIST, CIFAR-10, CIFAR-100, Caltech-101,

and Imagenette, training inputs are augmented with random horizontal flipping, a method that does

not change the frequency profile of the image.

Optimization schedule: For all models, we use the following default PyTorch (v1.12.1) optimiza-

tion settings. For SGD, we disable all of the following mechanism: dampening, weight decay, and

Nesterov. For Adam, we use the default values of β1 = 0.9 β2 = 0.999, ϵ = 10−8 and disable

weight decay and disable AMSgrad (Reddi et al., 2018) to eliminate other factors that may affect

the robustness of the model. For RMSProp, we use default values of α = 0.99, ϵ = 10−8, and disable

momentum and disable centered RMSProp which normalizes the gradient by an estimation of its

variance. All models are trained for 200 epochs. In Table 4.2, we list the initial learning rate. The

learning rate decreases by a factor of 0.1 at epoch 100 and 150.

Model architecture: For MNIST and Fashion-MNIST, we use a ReLU-activated, two-layer convo-

lutional neural network ending with two fully-connected layers. For CIFAR-10, CIFAR-100, SVHN,

Caltech-101, and Imagenette, we use PreActResNet18 (He et al., 2016b) and Vision Transformers

(ViT-B/16) (Dosovitskiy et al., 2021). For the Speech Commands dataset (Warden, 2018), we use

the M5 network architecture defined by Dai et al. (2017). See Table 4.2 for details of all architec-

tures used in this chapter. We denote Conv(i, o, k) as a convolution layer having i input channels,

o output channels with k by k filters, FN(i, o) as a fully-connect layer with i input channels and

o output channels, and SM(o) as the soft-max layer with o output. The stride for all convolution

layers is 1. The main experiments in our work are centered around models based on convolutional

neural networks, within the computer vision domain. Additional results from using ViT-B/16 and

on the Speech Commands dataset can be found in Table 4.5 and Table 4.6, respectively.

Batch normalization: We concentrate on a particular aspect of the training process: the selection

of optimizers. Our aim is to shed light on how this critical component influences the robustness

of trained models. It has been recently shown that the use of batch normalization (BN) can also

affect the robustness of the model (Benz et al., 2021b; Benz et al., 2021a; Wang et al., 2022a).

Consequently, to maintain focus on the impact of optimizers, we have omitted BN in the training

phase for the experiments leading to the results in Figure 4.1 and the analysis in Section 4.3.

However, to show that our conclusions remain valid for models with BN, we have included additional

results that incorporate BN in Table 4.4.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 60

Table 4.2: Experiment setup: the initial learning rate and the definition of neural networks in
this work.

Dataset Optimization Initial Learning Rate

MNIST

SGD 0.1

Adam 0.0005

RMSProp 0.0005

Fashion-MNIST

SGD 0.1

Adam 0.0005

RMSProp 0.0005

CIFAR-10

SGD 0.2

Adam 0.0002

RMSProp 0.0005

CIFAR-100

SGD 0.3

Adam 0.0005

RMSProp 0.0005

SVHN

SGD 0.2

Adam 0.0002

RMSProp 0.0002

Caltech-101

SGD 0.05

Adam 0.0002

RMSProp 0.001

Imagenette

SGD 0.1

Adam 0.0002

RMSProp 0.0002

Speech Commmands

SGD 0.1

Adam 0.1

RMSProp 0.1

Dataset Structure

MNIST
Fashion-MNIST

Conv(1, 16, 4) - ReLU -
Conv(16, 32, 4) - ReLU -

FN(21632, 100) -
FN(100, 10) -

SM(10)
CIFAR-10
CIFAR-100

SVHN
Caltech-101
Imagenette

PreActResNet18
ViT-B/16

Speech
Commands

M5 (Dai et al., 2017)

4.B Generalization and Robustness Results

Main results: Table 4.3 summarizes the result on the standard generalization ability and robustness

properties of the models trained by SGD, Adam, and RMSProp on seven vision datasets. All

results are averaged over three independently initialized and trained models. To evaluate standard

generalization, we measure the classification accuracy of the models on the testing data. To capture

model robustness, we measure the classification accuracy of the models on the testing data perturbed

using Gaussian perturbations, ℓ2 and ℓ∞-bounded perturbations (Croce et al., 2020). Perturbations

with varying degrees of severity are included in the evaluation to ensure the observation of the

robustness difference is not limited to perturbations with any particular parameters. The degree

of severity is determined by the variance of the Gaussian perturbation and an ℓ2 and ℓ∞ norm for

the attacks. We select those parameters so the range of the accuracy differences between models is

similar across different datasets. Particularly, the highlighted results in Table 4.3 are in a similar

range, so we use them to plot Figure 4.1.We also ensure that the original image semantics remains in

the perturbed images, and we provide a visualization of the perturbed images in Figure 4.18 to 4.20.

Finally, for CIFAR-100 and Caltech-101, because of the large number of classes in the dataset,

we use the top-5 classification accuracy to plot Figure 4.1 as the results are within a range similar to

other datasets with 10 classes. The observation of the similar standard generalization and different

robustness holds on both top-1 and top-5 accuracy.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 61

Table 4.3: Evaluation of classification accuracy for models trained using SGD, Adam, and RMSProp
on both the original and perturbed test dataset (%). We evaluate the model robustness on the testing
data perturbed using Gaussian perturbations, ℓ2 and ℓ∞-bounded perturbations. We include various
severity of perturbations to better capture the model robustness. Models trained by SGD are the
most robust against the three types of perturbations across all datasets. The highlighted results
are used in Figure 4.1, as they are in relatively similar ranges. Results are averaged over three
independently initialized and trained models.

Dataset Optimization Test
Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 0.7 ϵ = 1.0 ϵ = 0.05 ϵ = 0.07 ϵ = 0.1

MNIST

SGD 98.72 98.59 97.94 95.64 93.00 87.33 66.33 87.53 71.93 31.50

Adam 99.05 98.86 96.76 89.33 92.33 86.00 54.67 85.40 52.93 8.77

RMSProp 98.90 98.70 97.02 90.63 91.67 83.00 50.00 82.73 50.00 7.33

σ2 = 0.001 σ2 = 0.005 σ2 = 0.01 ϵ = 0.1 ϵ = 0.5 ϵ = 0.7 ϵ = 0.01 ϵ = 0.03 ϵ = 0.05

Fashion-MNIST

SGD 91.20 90.49 87.78 84.30 82.33 24.33 12.33 67.23 22.30 4.17

Adam 90.98 89.91 85.03 78.91 70.33 6.00 0.33 53.57 5.33 0.00

RMSProp 91.15 90.09 85.23 78.69 72.67 15.93 4.67 62.67 16.33 1.67

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

CIFAR-10

SGD 90.16 87.35 74.13 68.66 67.40 37.57 16.30 53.93 21.27 0.93

Adam 90.73 86.93 67.50 58.54 64.03 29.60 11.10 50.57 13.93 0.20

RMSProp 90.46 86.25 70.03 61.52 60.10 25.47 8.87 47.87 14.03 0.33

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

CIFAR-100(top1)

SGD 59.76 56.88 46.26 41.28 28.47 12.93 5.90 18.80 5.57 1.17

Adam 61.10 55.30 31.54 24.92 24.30 7.13 1.87 14.43 2.47 0.33

RMSProp 60.36 56.46 36.42 29.50 28.90 10.47 2.83 17.90 3.47 0.20

CIFAR-100(top5)

SGD 84.67 81.77 72.84 67.53 80.30 70.20 59.90 75.30 61.70 39.53

Adam 85.41 81.37 58.11 49.54 80.53 66.73 52.77 74.70 53.70 33.43

RMSProp 85.18 81.66 62.71 54.44 80.93 68.57 54.10 74.60 59.10 34.10

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

SVHN

SGD 96.11 95.68 94.47 93.81 85.53 63.60 39.63 80.67 49.83 17.03

Adam 96.48 96.03 94.04 91.46 80.77 57.83 35.93 78.93 47.50 12.43

RMSProp 96.42 95.91 94.07 91.87 81.13 57.90 34.10 76.93 46.33 11.30

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

Caltech-101(top1)

SGD 70.80 68.13 57.67 43.46 58.77 47.03 35.17 48.27 27.87 4.70

Adam 72.32 58.34 19.88 8.55 57.70 44.47 29.60 45.47 22.03 2.63

RMSProp 73.82 69.38 51.34 33.17 37.80 11.30 2.80 14.77 1.93 0.03

Caltech-101(top5)

SGD 85.96 84.84 77.57 67.16 85.30 84.43 79.00 83.97 75.47 52.27

Adam 88.08 79.48 38.55 19.67 82.03 80.67 77.63 83.97 72.07 45.87

RMSProp 88.37 85.90 72.19 52.74 80.20 63.40 45.93 63.97 41.33 23.90

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

Imagenette

SGD 89.44 84.83 67.23 50.21 70.70 44.13 21.33 47.23 14.33 0.37

Adam 89.75 71.84 29.05 17.72 65.30 31.53 11.83 39.43 6.23 0.07

RMSProp 89.77 73.25 28.28 17.16 62.30 30.27 11.27 38.40 6.20 0.03

Results on Models with Batch Normalization Enabled

When BN layers are activated in PreActResNet18, we observe that the models exhibit similar stan-

dard generalization performance, yet the robustness difference between SGD and adaptive gradient

methods remains evident. This observation is in line with the results presented in Table 4.4, where

BN layers are disabled. Notably, the accuracy of models with BN enabled is significantly lower

compared to their BN-disabled counterparts under almost all types of perturbations, particularly

under stronger perturbations. This finding aligns with the results from the previous work (Benz

et al., 2021b; Benz et al., 2021a; Wang et al., 2022a).

Results on Vision Transformers

In addition to the network designs considered in Table 4.2, we extend our work to ViT in order to

verify whether similar observations can be drawn on other neural network architectures.

It is important to note that the dataset utilized in this chapter is significantly smaller in size com-

pared to larger datasets such as ImageNet and JFT-300M. Recent research, such as the work by Zhu

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 62

Table 4.4: Results on standard generalization and robustness of models trained with
BN enabled (%). We follow the exact optimization configuration as the ones used in generating
Table 4.3. The only modification is that BN is enabled.

Dataset Optimization Test
Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR-10

SGD 92.24 86.91 55.23 43.29 64.84 27.86 6.96 48.64 9.14 0.04

Adam 93.38 85.67 50.41 39.11 56.5 15.96 2.63 37.7 3.8 0

RMSProp 93.57 86.97 52.09 39.86 55.93 15.16 2.23 37.7 3.76 0

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR-100

SGD 72.24 57.99 26.08 19.23 34.36 10.2 3.63 21.3 4.8 0.2

Adam 71.36 55.85 24.55 18.23 27.56 6.66 1.73 15.26 2.9 0.23

RMSProp 70.99 56.13 24.56 18.03 23.8 5.1 1.1 13.7 2 0.1

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

SVHN

SGD 94.16 95.81 94.96 92.90 81.73 60.56 41.96 76.13 49.26 15.3

Adam 96.62 96.09 93.96 91.19 80.13 47.76 21.86 72.36 32.76 4.36

RMSProp 96.44 94.86 93.75 91.02 79.86 48.43 22.16 72.36 33.7 3.96

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Caltech-101

SGD 78.61 72.69 45.38 25.87 61.23 44.03 23.03 46.80 13.13 0.83

Adam 79.58 62.21 21.08 10.35 56.76 34.46 13.06 37.3 5.66 0.23

RMSProp 75.56 69.89 45.38 23.13 58.6 44.6 20.5 42.6 11.3 0.6

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Imagenette

SGD 89.35 76.67 46.18 28.27 73.43 42.96 17.56 48.93 14.33 0.03

Adam 91.88 67.29 24.30 14.92 67.66 24.06 3.06 31.4 6.23 0

RMSProp 91.93 67.02 23.79 15.43 68.76 26.1 4.1 33.66 6.20 0

et al. (2023), has shown that ViT tends to generalize poorly on small datasets when trained from

scratch. In particular, Zhu et al. (2023) empirically demonstrated that ViT and ResNet learn distinct

representations on small datasets while converging to similar representations on larger datasets.

Therefore, we perform fine-tuning on a pretrained ViT-B/16. Among the datasets we considered,

Imagenette is a 10-class subset of the ImageNet-1k dataset, making it especially suitable for the fine-

tuning task, since the publicly available ViT checkpoint was pretrained on ImageNet-1k. Also, it is

important to note that the pretrained models were originally trained using Adam. In our fine-tuning

process, we treat ViT as a feature extractor (i.e., no weight update on the transformer encoder),

with a focus on fine-tuning the Multi-Layer Perceptrons (MLP) head. Our approach follows prior

work (Steiner et al., 2022) and incorporates the three different optimizers, each fine-tuned for 10

epochs. We initiated the fine-tuning process with an initial learning rate of 0.01, followed by a cosine

decay learning rate schedule and a linear warmup. Throughout this process, we maintained a fixed

batch size of 512.

To evaluate the robustness of the fine-tuned models, we maintained the exact same perturbation

strengths, including the variance of Gaussian noise and ϵ for adversarial perturbations, as used in

Table 4.3. The results can be found in Table 4.5. We draw three observations.

First, all models fine-tuned with the three different optimizers achieve near 100% test accuracy, a

substantial improvement from the 89% accuracy when training from scratch using PreActResNet18.

This significant boost in standard generalization highlights the effectiveness of fine-tuning with

ViT. Second, we observe that the fine-tuned models exhibit a notable increase in robustness to

Gaussian noise. However, they are highly vulnerable to adversarial perturbations. This observation

is consistent with the results from existing literature (Zhang et al., 2019), where a trade-off is

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 63

Table 4.5: Results on standard generalization and robustness of ViT-B/16 fined-tuned
on the Imagenette dataset (%).

Model Optimization Test
Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

ViT-b/16

SGD 99.18 99.05 96.16 91.25 6.2 0 0 1.3 0 0

Adam 99.93 99.51 94.43 88.59 5.1 0 0 0.7 0 0

RMSProp 99.92 99.54 95.38 89.91 5 0 0 0.8 0 0

Table 4.6: Results on standard generalization and robustness of models on an audio
classification task on the Speech Commands dataset (%).

Dataset Optimization Test
Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.01 ϵ = 0.05 ϵ = 0.1 ϵ = 0.0001 ϵ = 0.0005 ϵ = 0.001

Speech

Commands

SGD 85.14 55.76 39.88 33.42 70.01 20.31 9.81 75.6 36.71 13.47

Adam 85.47 54.73 38.87 31.95 60.74 17.87 8.49 71.97 29.2 10.15

RMSProp 84.67 52.37 36.59 27.94 59.57 19.04 8.88 70.50 30.95 11.01

often present between standard accuracy and adversarial robustness. Finally, we make a similar

observation on the robustness difference between models fine-tuned with the three optimizers, where

models fine-tuned with SGD exhibited greater robustness to both Gaussian noise and adversarial

perturbations when compared to models fine-tuned using Adam and RMSProp.

Results with an Audio Dataset

Besides the vision domain, we extend our work to the audio domain since audio signals offer a

frequency-based interpretation as well. We include additional results in Table 4.6, which compare

the standard generalization and robustness properties of an audio classifier trained on the Speech

Commands dataset (Warden, 2018). We focus on the PreActResNet18 architectures and all models

are trained for 200 epochs, with an initial learning rate of 0.1 and learning rate decay by a factor of

0.1 at epoch 100 and 150. We consider the accuracy of models under Gaussian- and adversarially-

perturbed test sets. Manual verification was conducted to ensure that the noisy audio phrase could

still be recognizable.

Results demonstrate that despite similar test accuracy, the models trained using SGD exhibit

greater robustness when compared to the other two optimization methods. These insights provide

valuable context to the generalizability of our initial observations, offering a more comprehensive

understanding of how optimizers perform in the context of different data modalities.

Results with Momentum-enabled SGD

Additional results with momentum-enabled SGD (SGD-m) are included in Table 4.7. We maintain

the exact same optimization configuration as that is used for generating the SGD results presented

in Table 4.3, and the only variation is an additional momentum term with a coefficient of β = 0.9.

The result shows that models optimized by both vanilla SGD and SGD-m exhibit similar trends in

terms of generalization and robustness.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 64

Table 4.7: Results on standard generalization and robustness of models trained by SGD
without and with momentum (%).

Dataset Optimization Test
Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR-10
SGD 90.16 87.35 74.13 68.66 67.40 37.57 16.30 53.93 21.27 0.93

SGD-m 89.79 87.28 73.207 66.783 67.1 38.067 15.9 55.667 20.233 0.6333

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR-100
SGD 59.76 56.88 46.26 41.28 28.47 12.93 5.90 18.80 5.57 1.17

SGD-m 56.08 55.03 44.97 40.03 29.2 12.4 5.7 19.7 6.5 0.8

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

SVHN
SGD 96.11 95.68 94.47 93.81 85.53 63.60 39.63 80.67 49.83 17.03

SGD-m 96.14 95.71 94.44 92.80 82.7 60.53 39.03 77.33 49.26 15.96

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Caltech-101
SGD 70.80 68.13 57.67 43.46 58.77 47.03 35.17 48.27 27.87 4.70

SGD-m 69.89 67.77 55.77 41.34 54.86 43.36 31.06 44.16 23.9 3.133

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Imagenette
SGD 89.44 84.83 67.23 50.21 70.70 44.13 21.33 47.23 14.33 0.37

SGD-m 88.69 85.05 68.58 51.15 75.53 49.2 24.53 56.43 17.76 0.2

4.C Filtering Irrelevant Frequencies

We demonstrate irrelevant frequencies in two settings: i) DCT basis vectors with a low magnitude

are irrelevant and ii) high-frequency DCT bases are irrelevant. In Appendix 4.E, we visualize the

original images and the modified images used in Section 4.3.1.

To understand how the modified training images are generated, we use Φnrg(x, p) with 0 < p <

100 to denote the operation that modifies the input image x by removing the DCT basis vectors

whose magnitudes are in the bottom p
100 -th percentile. We use Mnrg(x, p) to denote the binary mask

used in the process. Consider an image x ∈ Rd×d, the entire process can be formulated as

Φnrg(x, p) = C(x̃⊙Mnrg(x, p))C⊤,

where ⊙ is the element-wise product and C is the DCT transformation matrix. The binary mask

Mnrg ∈ {0, 1}d×d
is defined as

Mnrg(x, p) =

{
1 if |x̃i,j | > ϕ(x̃, p)

0 otherwise,

where ϕ(x̃, p) ∈ R computes the p
100 -th percentile in |x̃|. Therefore, DCT basis vectors with a

magnitude smaller than the threshold are first discarded in x̃, and then this filtered x̃ is converted

back to the spatial domain.

Similarly, we use Φfreq(x, p) to denote the operation that modifies the input image x by removing

the DCT basis vectors whose frequency are in the highest p
100 -th percentile. We use Mfreq(p) to

denote the binary mask used in the process. This operation can be formulated as

Φfreq(x, p) = C(x̃⊙Mfreq(p))C⊤,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 65

Table 4.8: Examples of the synthetic data distribution in the frequency and the spatial
domain.

Σ̃
Frequency-domain
Representation

Spatial-domain
Representation

diag
{
σ̃2
0 , 0, 0

}
(X̃0, 0, 0) (

√
1
3 X̃0,

√
1
3 X̃0,

√
1
3 X̃0)

diag
{
0, σ̃2

1 , 0
}

(0, X̃1, 0) (
√

1
2 X̃1, 0,−

√
1
2 X̃1)

diag
{
0, 0, σ̃2

2

}
(0, 0, X̃2) (

√
1
6 X̃2,−

√
2
3 X̃2,+

√
1
6 X̃2)

diag
{
0, σ̃2

1 , σ̃
2
2

}
(0, X̃1, X̃2) (

√
1
2 X̃1 +

√
1
6 X̃2,−

√
2
3 X̃2,−

√
1
2 X̃1 +

√
1
6 X̃2)

diag
{
σ̃2
0 , 0, σ̃

2
2

}
(X̃0, 0, X̃2) (

√
1
3 X̃0 +

√
1
6 X̃2,

√
1
3 X̃0 −

√
2
3 X̃2,

√
1
3 X̃0 +

√
1
6 X̃2)

diag
{
σ̃2
0 , σ̃

2
0 , 0

}
(X̃0, X̃1, 0) (

√
1
3 X̃0 +

√
1
2 X̃1,

√
1
3 X̃0,

√
1
3 X̃0 −

√
1
2 X̃1)

diag
{
σ̃2
0 , σ̃

2
1 , σ̃

2
2

}
(X̃0, X̃1, X̃2) (

√
1
3 X̃0 +

√
1
2 X̃1 +

√
1
6 X̃2,

√
1
3 X̃0 −

√
2
3 X̃2,

√
1
3 X̃0 −

√
1
2 X̃1 +

√
1
6 X̃2)

where Mfreq ∈ {0, 1}d×d
is defined as:

Mfreq(p) =

{
1 if i2 + j2 > p

100

√
2d

0 otherwise,

where i, j are frequency bases. Notice that Mfreq only depends on the size of the image, whereas

Mnrg depends on the input x since we identify the threshold value in |x̃|. Examples of the modified

images and the modification process are shown in Appendix 4.E.

4.D Linear Regression Analysis

4.D.1 Understanding the Synthetic Dataset

The goal of the linear analysis is to study the learning dynamics of different algorithms on a synthetic

dataset where we can clearly define the frequency-domain signal-target (ir)relevance. This motivates

us to directly define the distribution of the input signal in the frequency domain. In Section 4.4, we

consider X̃ follows a Gaussian distribution N (µ̃, Σ̃), and for analytical tractability, we consider µ̃ = 0

and a diagonal structure of Σ̃, i.e., Σ̃ = diag(σ̃2
0 , ..., σ̃

2
d−1). Admittedly, it is quite unconventional

to define the data distribution directly in the frequency domain, so we provide a few examples in

Table 4.8 to illustrate the structure of the input data in both representations.

Similar to the analysis in Section 4.4.2, we focus on a low dimensional setting with d = 3. The

first six rows in Table 4.8 represent the scenario when there are zero variances in Σ̃. Notice the notion

of irrelevant information in the data is different in the two representations. In the frequency domain,

an irrelevant frequency indicates that the data has a value of zero at the particular frequency. In the

spatial domain, having irrelevant frequency means that there are redundant dimensions in the spatial

representation of the data because the value of data at some dimensions can be fully predictable by

knowing the values of data at some other dimensions.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 66

Derivation of Equation 4.7

The adversarial risk under an ℓ2-norm bounded perturbation with a size of ϵ is

Ra(w̃) ≜ E(X̃,Y)

[
max

||∆x̃||2≤ϵ
ℓ(X̃ + ∆x̃, Y ; w̃)

]
= E(X̃,Y)

[
max

||∆x̃||2≤ϵ

1

2

∣∣∣f(X̃ + ∆x̃, w̃)− Y
∣∣∣2]

= EX̃

[
max

||∆x̃||2≤ϵ

1

2

∣∣∣〈 X̃ + ∆x̃ , w̃
〉
−

〈
X̃ , w̃∗

〉∣∣∣2]
= EX̃

[
max

||∆x̃||2≤ϵ

1

2

∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ⟨∆x̃ , w̃ ⟩
∣∣∣2],

where we focus on the expectation over X̃, as Y is replaced with
〈
X̃ , w̃∗

〉
.

Derivation of Equation 4.8

Given a random variable X̃, we define ∆x̃∗ to be the maximizer of the term inside the expectation

of (4.7):

∆x̃∗ ≜ arg max
||∆x̃||2≤ϵ

1

2

∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ⟨∆x̃ , w̃ ⟩
∣∣∣2 .

To maximize this term, we need the two inner product terms to have the same sign. This means

∆x̃∗ = sign
[〈

X̃ , w̃ − w̃∗
〉]

arg max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 .

For the remaining argmax term, we can first use the Cauchy-Schwarz inequality to obtain

max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 ≤ max
||∆x̃||2≤ϵ

∥∆x̃∥22 ∥w̃∥
2
2 = ϵ2 ∥w̃∥22 ,

which leads to

arg max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 = ϵ
w̃

∥w̃∥2
.

Finally, we have

∆x̃∗ = ϵ sign
[〈

X̃ , w̃ − w̃∗
〉] w̃

||w̃||2
.

Derivation of Equation 4.9

The adversarial risk is

Ra(w̃) =
1

2
EX̃

[∣∣∣〈 X̃ , w̃ − w̃∗
〉

+ ϵ sign[
〈
X̃ , w̃ − w̃∗

〉
]||w̃||2

∣∣∣2]
=

1

2
EX̃

[〈
X̃ , w̃ − w̃∗

〉2

+ 2ϵ
∣∣∣〈 X̃ , w̃ − w̃∗

〉∣∣∣ ||w̃||2 + ϵ2||w̃||22
]

=
1

2

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i)2 + ϵEX̃

[∣∣∣〈 X̃ , w̃ − w̃∗
〉∣∣∣]||w̃||2 +

ϵ2

2
||w̃||22.

To compute the expectation, we first denote Z =
∑

i∈Irel X̃i(w̃i − w̃∗
i). Because σ̃2

i = 0 for all

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 67

i ∈ Iirrel, this allows us to ignore those irrelevant frequencies in the summation in Z. This leads us

to

EX̃

[∣∣∣〈 X̃ , w̃ − w̃∗
〉∣∣∣] = EZ

[
|Z|

]
.

Since Z is a linear combination of zero-mean Gaussian random variable’s, this makes it also a

zero-mean Gaussian r.v, i.e., E[Z] = 0. The variance of Z is

σ2
Z = E[Z2]− E[Z]2

= E
[∑
i∈Irel

∑
j∈Irel,i̸=j

[
X̃iX̃j(w̃i − w̃∗

i)(w̃j − w̃∗
j)

]
+

∑
i∈Irel

[
X̃2

i (w̃i − w̃∗
i)2

]]

= E
[∑
i∈Irel

[
X̃2

i (w̃i − w̃∗
i)2

]]
=

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i)2,

where the expectation on the cross-multiplication term is zero because X̃i and X̃j are independent

random variable’s. This means Z ∼ N (0, σ2
Z) with σ2

Z =
∑

i∈Irel σ̃
2
i (w̃i − w̃∗

i)2. Therefore, EZ

[
|Z|

]
is the expectation of a folded normal distribution:

EZ

[
|Z|

]
= σZ

√
2

π
=

√
2

π

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i)2.

Derivation of the signGD Dynamics for Σ̃ = diag {σ̃2
0, σ̃

2
1, 0}

To understand ẽ(t + 1) with our specific choice of Σ = C⊤Σ̃C and Σ̃ = diag
{
σ̃2
0 , σ̃

2
1 , 0

}
, first notice

that the DCT transformation matrix C = C(3) follows the definition in (4.4):

C =


√

1
3

√
1
3

√
1
3√

2
3 cos π

6

√
2
3 cos π

2

√
2
3 cos 5π

6√
2
3 cos π

3

√
2
3 cosπ

√
2
3 cos 5π

3

 =


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6

 .

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 68

Denote
√

1
3 σ̃

2
0 ẽ0(t) and

√
1
2 σ̃

2
1 ẽ1(t) by using A(t) and B(t), respectively. Putting it all together, we

have:

ẽ(t + 1) = ẽ(t)− ηC sign[C⊤Σ̃Ce(t)]

= ẽ(t)− ηC sign[C⊤Σ̃ẽ(t)]

= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6

 sign



√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6


⊤

σ̃2
0 ẽ0(t)

σ̃2
1 ẽ1(t)

0





= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6




sign
[√

1
3 σ̃

2
0 ẽ0(t) +

√
1
2 σ̃

2
1 ẽ1(t)

]
sign

[√
1
3 σ̃

2
0 ẽ0(t)

]
sign

[√
1
3 σ̃

2
0 ẽ0(t)−

√
1
2 σ̃

2
1 ẽ1(t)

]


= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6




sign[A(t) + B(t)]

sign[A(t)]

sign[A(t)−B(t)]



= ẽ(t)− η


√
3
3 (sign[A(t) + B(t)] + sign[A(t)] + sign[A(t)−B(t)])

√
2
2 (sign[A(t) + B(t)]− sign[A(t)−B(t)])

√
6
6 sign[A(t) + B(t)]−

√
6
3 sign[A(t)] +

√
6
6 sign[A(t)−B(t)]

 .

4.D.2 Understanding the Dynamics of signGD with Σ̃ = diag {σ̃2
0, σ̃

2
1, 0}

Previous work has shown that for strictly convex problems with a unique minimum, the signGD

solution converges to the minimum under a sequence of decaying learning rate: limt→∞ η(t) = 0

(Moulay et al., 2019). In this section, we follow Section 4.4.2 where the GD dynamics is studied under

a constant learning rate and investigate the behavior of signGD under a fixed η. Compared to the

asymptotic GD solution that converges exactly to the standard risk minimizer, we demonstrate that

the asymptotic signGD solution converges to an O(η) neighborhood of the standard risk minimizer.

For the rest of this section, we first perform a partition-based analysis to study the learning

dynamics of ẽ0 and ẽ1 in Appendix 4.D.2. Proposition 4.D.4 summarizes how the value of weight

changes in different partitions, and the weight adaptation of ẽ0 and ẽ1 is summarized in Corol-

lary 4.D.6. Based on the corollary, we analyze the dynamics of ẽ2 in Appx. 4.D.2. Lastly, we focus

on the differences between the adversarial risk of solutions found by GD and signGD in Appx. 4.D.2.

Dynamics of ẽ0 and ẽ1 under signGD

With our choice of Σ̃, (4.16) shows that weight adaptation depends on the sign of three terms:A(t),

A(t) +B(t) and A(t)−B(t). This allows us to study the learning dynamics of signGD by analyzing

the three terms in Table 4.9. There are 27 sign combinations in total; however, not all of them are

valid. For example, consider the combination with sign[A(t)] = 1, sign[A(t) + B(t)] = −1. Those

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 69

Table 4.9: The dynamics of the error term in the frequency domain under signGD.
Dynamics of the error term in the frequency domain can be written in a tabular format and the
exact update depends on the initialized weight w̃(0) and the true model w̃∗. We use A(t) and B(t)

to denote
√
3
3 σ̃2

0 ẽ0(t) and
√
2
2 σ̃2

1 ẽ1(t), respectively. Invalid sign combinations are denoted by using
n/a.

No. sign[A(t)] sign[A(t) + B(t)] sign[A(t) − B(t)] ẽ(t + 1) |A(t)| vs. |B(t)|

1 1 1 1 ẽ(t) − η
[√

3, 0, 0
]⊤

|A(t)| > |B(t)|

2 1 1 −1 ẽ(t) − η
[√

3
3 ,

√
2,−

√
6

3

]⊤
|A(t)| < |B(t)|

3 1 1 0 ẽ(t) − η
[

2
√

3
3 ,

√
2

2 ,−
√

6
6

]⊤
|A(t)| = |B(t)|

4 1 −1 1 ẽ(t) − η
[√

3
3 ,−

√
2,−

√
6

3

]⊤
|A(t)| < |B(t)|

n/a 1 −1 −1 n/a n/a

n/a 1 −1 0 n/a n/a

5 1 0 1 ẽ(t) − η
[

2
√

3
3 ,−

√
2

2 ,−
√

6
6

]⊤
|A(t)| = |B(t)|

n/a 1 0 −1 n/a n/a

n/a 1 0 0 n/a n/a

n/a −1 1 1 n/a n/a

6 −1 1 −1 ẽ(t) − η
[
−

√
3

3 ,
√
2,

√
6

3

]⊤
|A(t)| < |B(t)|

n/a −1 1 0 n/a n/a

7 −1 −1 1 ẽ(t) − η
[
−

√
3

3 ,−
√
2,

√
6

3

]⊤
|A(t)| < |B(t)|

8 −1 −1 −1 ẽ(t) − η
[
−
√
3, 0, 0

]⊤
|A(t)| > |B(t)|

9 −1 −1 0 ẽ(t) − η
[
− 2

√
3

3 ,−
√

2
2 ,

√
6

6

]⊤
|A(t)| = |B(t)|

n/a −1 0 1 n/a n/a

10 −1 0 −1 ẽ(t) − η
[
− 2

√
3

3 ,
√

2
2 ,

√
6

6

]⊤
|A(t)| = |B(t)|

n/a −1 0 0 n/a n/a

n/a 0 1 1 n/a n/a

11 0 1 −1 ẽ(t) − η
[
0,

√
2, 0

]⊤
|A(t)| < |B(t)|

n/a 0 1 0 n/a n/a

12 0 −1 1 ẽ(t) − η
[
0,−

√
2, 0

]⊤
|A(t)| < |B(t)|

n/a 0 −1 −1 n/a n/a

n/a 0 −1 0 n/a n/a

n/a 0 0 1 n/a n/a

n/a 0 0 −1 n/a n/a

13 0 0 0 Optimal |A(t)| = |B(t)| = 0

two conditions imply that B(t) < 0 and |A(t)| < |B(t)|, and this means that sign[A(t)−B(t)] must

be positive. This makes the entry with sign[A(t)− B(t)] = −1 invalid, as shown in the fifth row in

Table 4.9. We denote those entries with invalid sign combinations as n/a.

Notice in (4.16) that the weight adaptation under signGD depends on the dynamics of A(t) and

B(t), and they are functions of ẽ0(t) and ẽ1(t) respectively, so let us first focus on understanding

the weight adaptation at the first two frequency bases.

There are 13 possible updates in Table 4.9. Notice that the non-zero updates are always in the

direction to reduce |ẽ0(t)| and |ẽ1(t)|, and the step size depends on the magnitude of |A(t)| and

|B(t)|.To simplify the analysis, let us focus on the updates on A and B instead. For example, in

updates 1 and 8, decreasing |ẽ0| by
√

3η is equivalent to decreasing |A| by σ̃2
0η.

Now take note of the limited number of update magnitudes for |A|, specifically σ̃2
0η,

2σ̃2
0η
3 , and

σ̃2
0η
3 , which correspond to updating |ẽ0| by

√
3η, 2

√
3

3 η, and
√
3
3 η, respectively. Similarly, |B| has only

two update magnitudes, namely σ̃2
1η and

σ̃2
1η
2 , which correspond to updating |ẽ1| with

√
2η and

√
2
2 η,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 70

respectively. This observation leads to the following proposition.

Proposition 4.D.1. Suppose the initial weight w(0) ∼ µ are sampled from probability density µ,

then neither A nor B (ẽ0 nor ẽ1) can be reduced to exactly 0 almost surely.

Proof. Due to the limited number of update magnitudes, reducing |A| and |B| to 0 requires their

initial value to be exactly some integer multiplication of those updates. However, with the initial

weight sampled from probability density µ, the probability of the initial values of A and B being

the exact integer multiple of the possible update is 0.

Next, we introduce the following lemma to understand the dynamics of A(t).

Lemma 4.D.2. Consider the update rule x(t + 1) = x(t) − sign[x(t)]∆(t), where x ∈ R, ∆(t) ∈
{∆1,∆2, . . . ,∆max} and 0 < ∆1 < ∆2 < · · · < ∆max. Then there exists t such that |x(t)| ≤ ∆max.

Moreover, whenever |x(t)| ≤ ∆max, the rest of the sequence stays ∆max-bounded, i.e., |x(t′)| ≤ ∆max

for all t′ ≥ t.

Proof. In the following, we provide a proof for the case when x(0) > 0. A proof with x(0) < 0 can

be done in a similar way. The proof can be divided into two parts.

1. Let us denote the sequence of {x(0), x(1), . . . , x(t)} by {x(t)}. First, we prove that there

exists a t such that |x(t)| ≤ ∆max.

If x(t) > ∆max, then x(t + 1) = x(t)−∆(t) ≥ x(t)−∆max > 0.

Consider {x(t)} with x(t′) > ∆max for all t′ ∈ {0, 1, . . . , t}, we have x(t′ + 1) = x(t′) −∆(t′) <

x(t′). This means that for any x(t) > ∆max, the sequence {x(t)} is decreasing.

We prove, by contradiction, that there exists a t such that |x(t)| < ∆max. Suppose that such a t

does not exist, then one of the two cases must happen.

1. x(t) > ∆max for all t.

2. ∃k such that x(0) > x(1) > · · · > x(k) > ∆max, but x(k + 1) < −∆max.

For case 1, since x(t) > ∆max, we know that {x(t)} is decreasing and bounded from below, so we

have x(t)→ x∗ ≥ ∆max as t→∞. This means that limt→∞ x(t) = limt→∞ x(t + 1) = x∗.

Using the update rule, we have

lim
t→∞

x(t + 1) = lim
t→∞

x(t)−∆(t) sign(x(t))

= lim
t→∞

x(t)−∆(t)

= x∗ −∆(t),

or x∗ = x∗ −∆(t), which is impossible because ∆(t) > 0.

For case 2, by the assumption of the case, we have x(k + 1) = x(k) −∆(k) < −∆max, which is

not possible because x(k) > ∆max.

The same approach can be applied to prove the case when x is initialized with a negative value,

i.e., x(0) < 0.

The first part of the proof shows that there exists a t such that |x(t)| ≤ ∆max.

2. Next, we show that for any t such that |x(t)| ≤ ∆max, we have |x(t + 1)| ≤ ∆max.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 71

When 0 ≤ x(t) ≤ ∆max, we have

x(t + 1) = x(t)−∆(t) ≥ −∆max and x(t + 1) = x(t)−∆(t) ≤ x(t) ≤ ∆max.

When −∆max ≤ x(t) ≤ 0, we have

x(t + 1) = x(t) + ∆(t) ≤ ∆max and x(t + 1) = x(t) + ∆(t) ≥ x(t) ≥ −∆max.

This means that −∆max ≤ x(t + 1) ≤ ∆max, and this results holds for any t such that |x(t)| ≤
∆max.

To combine the two parts of the proof, consider the first of such t, i.e., t = min { t : |x(t)| ≤ ∆max }.
We can prove, by mathematical induction, that |x(t′)| ≤ ∆max for all t′ ≥ t.

The following proposition describes the behavior of A(t) under signGD.

Proposition 4.D.3. There exists t such that |A(t′)| ≤ σ̃2
0η for all t′ > t.

Proof. Table 4.9 shows that there is always a non-zero update in the direction to reduce |A(t)|, so

we can define the dynamics of A(t) as

A(t + 1) = A(t)− sign[A(t)]∆(t),

where ∆(t) ∈
{

σ̃2
0η
3 ,

2σ̃2
0η
3 , σ̃2

0η
}

. Lemma 4.D.2 with ∆max = σ̃2
0η proves the proposition.

Proposition 4.D.3 implies that once |A| drops below σ̃2
0η, it remains below σ̃2

0η for all future

iterations. Combining Proposition 4.D.3 with the update directions of A in Table 4.9, we know

that A will begin oscillating around zero. However, there are some limitations of Proposition 4.D.3.

First, we do not know when exactly the oscillation starts: whether it starts immediately following

the first iteration when |A| ≤ σ̃2
0η or from some iterations after it. Second, the characteristics of

this oscillation (periodic or non-periodic) are unknown. Answers to these questions can improve

our understanding of the behavior of A, and later become particularly useful in developing the

asymptotic signGD solution of ẽ2, which is important because it leads to the adversarial risk of the

signGD solution.

Because the update for B(t) can be zero when |A(t)| > |B(t)|, Lemma 4.D.2 is not suitable

to understand the dynamics of B, as the lemma requires that all step sizes be greater than zero.

Nevertheless, Proposition 4.D.3 allows us to narrow down the range of A and we can partition the

set of all possible values of A and B. By analyzing the dynamics of A and B in those partitions, we

can develop the standard and adversarial population risk of the asymptotic signGD solution under

a constant learning rate η.

Let us first divide the set of values of (A,B) into partitions based on the value of |A|, and then

divide those partitions into smaller subpartitions based on the relative magnitude of |A| and |B|.
Such a partitioning process is illustrated in Figure 4.8.

• R1 =
{

(A,B) :
2σ̃2

0η
3 < |A| < σ̃2

0η and B ∈ (−∞,∞)
}

,

– R11 = { (A,B) : (A,B) ∈ R1 and |A| < |B| },

– R12 = { (A,B) : (A,B) ∈ R1 and |A| > |B| },

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 72

Figure 4.8: Analyzing the dynamics of A and B by partitioning the set of values of (A,B)
in [−σ̃2

0η, σ̃
2
0η] × R. Such a set is first divided into partitions R1, R2 and R3 based on the value

of |A|. Then, we consider Rs = {R22, R31, R32, R33, R34} as the stationary subpartitions, because
once (A(t), B(t)) ∈ Rs, the sequence remains in the stationary subpartitions. Also, we consider
Rt = {R11, R12, R21, R23} as the transient subpartitions, because any (A(t), B(t)) ∈ Rt will soon
enter one of the stationary subpartitions, that is, there exists t′ ≥ t such that (A(t′), B(t′)) ∈ Rs.
We consider σ̃2

0 = σ̃2
1 = 1 and η = 1 in this figure.

• R2 =
{

(A,B) :
σ̃2
0η
3 < |A| < 2σ̃2

0η
3 and B ∈ (−∞,∞)

}
,

– R21 = { (A,B) : (A,B) ∈ R2 and |A| < |B| },

– R22 =
{

(A,B) : (A,B) ∈ R2 and |A| > |B| and
∣∣A + σ̃2

0η
∣∣ > |B| and

∣∣A− σ̃2
0η

∣∣ > |B|},

– R23 =
{

(A,B) : (A,B) ∈ R2 and |A| > |B| and
(∣∣A + σ̃2

0η
∣∣ < |B| or

∣∣A− σ̃2
0η

∣∣ < |B|) },

• R3 =
{

(A,B) : |A| < σ̃2
0η
3 and B ∈ (−∞,∞)

}
,

– R31 = { (A,B) : (A,B) ∈ R3 and |A| > |B| },

– R32 =
{

(A,B) :
⋃

k∈Zeven−{0}
{

(A,B) ∈ R3 and |A| >
∣∣B + kσ̃2

1η
∣∣}}

,

– R33 =
{

(A,B) :
⋃

k∈Zodd

{
(A,B) ∈ R3 and |A|+

∣∣B + kσ̃2
1η

∣∣ < σ̃2
0η
3

}}
,

– R34 = R3 − (R31 ∪R32 ∪R33),

where Zodd and Zeven are the set of odd and even integers, respectively.

There are nine non-overlapping subpartitions. We call R22, R31, R32, R33 and R34 the stationary

subpartitions and denote Rs = {R22, R31, R32, R33, R34}. They are called stationary subpartitions

because once (A(t), B(t)) ∈ Rs, the sequence remains in the stationary subpartition. On the other

hand, we call R11, R12, R21, R23 the transient subpartitions and denote Rt = {R11, R12, R21, R23}.
They are called the transient subpartitions because any (A(t), B(t)) ∈ Rt will soon enter one of the

stationary subpartitions, that is, there exists t′ ≥ t such that (A(t′), B(t′)) ∈ Rt. The dynamics of

A and B can be summarized in the following proposition.

Proposition 4.D.4.

Transient subpartitions: For each of R ∈ Rt, consider t such that (A(t), B(t)) ∈ R, then there

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 73

exists t′ > t such that (A(t′), B(t′)) ∈ Rs. The transition of (A(t), B(t)) from Rt to Rs happens at

most 3 iterations after t; specifically, it corresponds to the scenario of (A(t), B(t)) ∈ R11, (A(t +

1), B(t + 1)) ∈ R23, (A(t + 2), B(t + 2)) ∈ R21, and finally (A(t + 3), B(t + 3)) ∈ R3.

Stationary subpartitions: For each of R ∈ Rs, consider t such that (A(t), B(t)) ∈ R. For any

t′ ≥ t, |A(t′)| ≤ 2σ̃2
0η
3 and A(t′) shows 2-periodic behavior switching between positive and negative

signs, that is, for any i ∈ Z≥0, we have A(t + 2i) = A(t) and sign(A(t + 2i)) = sign(A(t)) =

− sign(A(t + 2i + 1)). To be more specific about each stationary subpartition, we have

1. For each of R ∈ {R22, R31}, consider t such that (A(t), B(t)) ∈ R. For any t′ ≥ t, |B(t′)| ≤ σ̃2
1η

and B(t′) remains constant, that is, B(t′) = B(t).

2. For each of R ∈ {R32, R33}, consider t such that (A(t), B(t)) ∈ R.

(a) There exists t̄ > t such that (A(t̄), B(t̄)) ∈ R31. Denote the smallest t̄ as t̄∗.

(b) For any t̄∗ > t′ ≥ t, we have |B(t′ + 1)| = |B(t′)| − sign[B(t′)].

(c) For any t′ ≥ t̄∗, |B(t′)| ≤ σ̃2
1η and B(t′) remains constant, that is, B(t′) = B(t).

3. Consider t such that (A(t), B(t)) ∈ R34.

(a) For any t′ ≥ t, (A(t′), B(t′)) remains in R34.

(b) There exists t̄ > t such that for any t̄ > t′ ≥ t, the sign of B(t′) remains constant.

(c) For any t′ ≥ t̄, |B(t′)| ≤ σ̃2
1η and B(t′) shows 2-periodic behavior switching between

positive and negative signs, that is, for any i ∈ Z≥0, we have B(t̄ + 2i) = B(t̄) and

sign(B(t̄ + 2i)) = sign(B(t̄)) = − sign(B(t̄ + 2i + 1)).

Proof. From Proposition 4.D.3, we know that from an arbitrary (A(0), B(0)), |A| will drop below σ̃2
0η

under the signGD update, which means that (A,B) must enter one of the subpartitions. This allows

us to continue analyzing the behavior of (A(t), B(t)) by assuming it enters one of the subpartitions

at iteration t.

Analysis of R11: For any (A(t), B(t)) in R11, we know that A(t + 1) = A(t) − sign[A(t)]
σ̃2
0η
3 .

This means that
σ̃2
0η
3 < |A(t + 1)| < 2σ̃2

0η
3 , so (A(t + 1), B(t + 1)) is in R2 and we can study its

dynamics using R2.

Analysis of R12: For any (A(t), B(t)) in R12, we know that A(t + 1) = A(t) − sign[A(t)]σ̃2
0η.

This means that |A(t + 1)| < σ̃2
0η
3 . Therefore, (A(t + 1), B(t + 1)) is in R3 and we can analyze its

dynamics using R3.

Analysis of R21: For any (A(t), B(t)) in R21, we know that A(t + 1) = A(t) − sign[A(t)]
σ̃2
0η
3 .

This means that |A(t + 1)| < σ̃2
0η
3 . Therefore, (A(t + 1), B(t + 1)) is in R3 and we can analyze its

dynamics using R3.

Dynamics of (A,B) in R22 and R23: For any (A(t), B(t)) in R22 and R23, we have A(t+ 1) =

A(t)− sign[A(t)]σ̃2
0η and B(t + 1) = B(t), so we know that

σ̃2
0η
3 < |A(t + 1)| < 2σ̃2

0η
3 .

Analysis of R22: For any (A(t), B(t)) in R22, we have |A(t + 1)| > |B(t + 1)|. This means

that (A(t + 1), B(t + 1)) remains in R22, and we have A(t + 2) = A(t + 1) − sign[A(t + 1)]σ̃2
0η and

B(t + 2) = B(t + 1), which means that (A(t + 2), B(t + 2)) returns to the starting position at

(A(t), B(t)). In fact, for any t′ ≥ t, A(t′) shows 2-periodic behavior switching between positive

and negative signs and B(t′) remains constant, that is, for any i ∈ Z≥0, we have A(t + 2i) = A(t),

sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)), and B(t + 2i + 1) = B(t + 2i) = B(t).

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 74

Analysis of R23: For any (A(t), B(t)) in R23, by the definition of subpartition, we have that

|A(t + 1)| < |B(t + 1)|, so (A(t + 1), B(t + 1)) is in R21. This means that (A(t + 2), B(t + 2)) is in

R3 and we can analyze its dynamics using partition R3.

Analysis of R31: For any (A(t), B(t)) in R31, we know that A(t+1) = A(t)− sign[A(t)]σ̃2
0η and

B(t + 1) = B(t). This means that
2σ̃2

0η
3 < |A(t + 1)| < σ̃2

0η. Since |A(t + 1)| > |B(t + 1)| = |B(t)|,
we have that B(t+2) = B(t+1) and A(t+2) = A(t+1)−sign[A(t+1)]σ̃2

0η, which means that (A(t+

2), B(t + 2)) returns to the starting position at (A(t), B(t)). Therefore, for any t′ ≥ t, A(t′) shows

2-periodic behavior switching between positive and negative signs and B(t′) remains constant, that

is, for any i ∈ Z≥0, we have A(t + 2i) = A(t), sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)),

and B(t + 2i + 1) = B(t + 2i) = B(t).

Dynamics of A in R32, R33 and R34: The behavior of A in R32, R33 and R34 is the same.

For any (A(t), B(t)) in {R32, R33, R34}, we know that

A(t + 1) = A(t)− sign[A(t)]
σ̃2
0η

3
and B(t + 1) = B(t)− sign[B(t)]σ̃2

1η. (4.21)

This means that |A(t + 1)| < σ̃2
0η
3 , so (A(t+ 1), B(t+ 1)) remains in R3. For any t′ ≥ t, A(t′) shows

2-periodic behavior switching between positive and negative signs, that is, for any i ∈ Z≥0, we have

A(t + 2i) = A(t) and sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)).

The behavior of B is different across the three subpartitions, so we analyze them separately.

Analysis of R32: Because all subpartitions are non-overlapping, for any (A(t), B(t)) in R32,

there exists a unique k ∈ Zeven−{0} such that A(t) and B(t) satisfies |A(t)| >
∣∣B(t) + kσ̃2

1η
∣∣. Next,

we show that starting from any (A(t), B(t)) in R32, after |k| iterations of signGD update, we have

|A(t + |k|)| > |B(t + |k|)|, which means that (A(t + |k|), B(t + |k|)) is in R31.

This can be proved by showing that |A(t + |k|)| = |A(t)| and |B(t + |k|)| =
∣∣B(t) + kσ̃2

1η
∣∣. For

any t′ ≥ t, A(t′) shows 2-periodic behavior, and because k is an even number, we have |A(t + |k|)| =
|A(t)|.

Since
∣∣B(t) + kσ̃2

1η
∣∣ > 0 and B(t+1) = B(t)−sign[B(t)]σ̃2

1η, we know that the sign of B remains

the same for the next |k| − 1 updates. This means that

B(t + |k|) = B(t)−
|k|−1∑
i=0

sign[B(t + i)]σ̃2
1η = B(t)− |k| sign[B(t)]σ̃2

1η.

By the definition of the subpartition, we have
σ̃2
0η
3 >

∣∣B(t) + kσ̃2
1η

∣∣; and this is true if and only if

B(t) and k have opposite signs because k is a non-zero even integer. Therefore, we have

|B(t + |k|)| =
∣∣B(t)− |k| sign[B(t)]σ̃2

1η
∣∣

=
∣∣B(t)− |k| (− sign[k])σ̃2

1η
∣∣

=
∣∣B(t) + |k| sign[k]σ̃2

1η
∣∣

=
∣∣B(t) + kσ̃2

1η
∣∣ .

Analysis of R33: Similarly, for any (A(t), B(t)) in R33, there exists a unique k ∈ Zodd such

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 75

that A(t) and B(t) satisfies |A(t)| +
∣∣B(t) + kσ̃2

1η
∣∣ < σ̃2

0η
3 . Again, we show that starting from any

(A(t), B(t)) in R33, after |k| iterations of signGD update, (A(t+ |k|), B(t+ |k|)) is in R31. This can

be proved by showing that
σ̃2
0η
3 − |A(t)| ≤ |A(t + |k|)| and

∣∣B(t) + kσ̃2
1η

∣∣ = |B(t + |k|)|.
First, by using the same analysis of

∣∣B(t) + kσ̃2
1η

∣∣ in R32, we have
∣∣B(t) + kσ̃2

1η
∣∣ = |B(t + |k|)|.

Next, the behavior of A(t) follows (4.21), which means that for any t′ ≥ t, A(t′) shows 2-periodic

behavior, and because k is an odd number, we have |A(t + |k|)−A(t)| = |A(t + 1)−A(t)| = σ̃2
0η
3 .

Also, we have |A(t + |k|)−A(t)| ≤ |A(t + |k|)| + |A(t)|, which means that
σ̃2
0η
3 ≤ |A(t + |k|)| +

|A(t)|, or
σ̃2
0η
3 − |A(t)| ≤ |A(t + |k|)|. Combining with the definition of the subpartition, we have

|B(t) + |k|| < σ̃2
0η

3
− |A(t)| ≤ |A(t + |k|)| .

Therefore, starting from any (A(t), B(t)) in R33, after |k| iterations of signGD updates, we have

|A(t + |k|)| > |B(t + |k|)|, which together with the fact that |A(t + |k|)| < σ̃2
0η
3 as shown before,

implies that (A(t + |k|), B(t + |k|)) is in R31.

Analysis of R34: Finally, we prove, by contradiction, that for any (A(t), B(t)) in R34, there is

no t′ > t such that (A(t′), B(t′)) in R31. Suppose that (A(t′), B(t′)) enters R31, then k ≜ t′− t must

be either an odd number or an even number. By the definition of the subpartition, if k is a non-zero

even number, it means that (A(t), B(t)) must be in R32; whereas if k is an odd number, it means

that (A(t), B(t)) must be in R33. Neither is possible since all subpartitions are non-overlapping, so

for any (A(t), B(t)) in R34, (A(t′), B(t′)) remains in R34 for all t′ ≥ t. This means that there will

always be a non-zero update on B, and this allows us to apply Lemma 4.D.2. For any (A(t), B(t))

in R34, there exists t such that |B(t′)| ≤ σ̃2
1η for all t′ ≥ t.

Combining Proposition 4.D.1 and the dynamics of (A,B) in the stationary subpartitions de-

scribed in Proposition 4.D.4, we have the following remark.

Remark 4.D.5. The asymptotic solution of A oscillates in [− 2σ̃2
0η
3 ,

2σ̃2
0η
3], which is a tighter bound

compared to the one in Proposition 4.D.3. The asymptotic solution of B either remains con-

stant in [−σ̃2
1η, σ̃

2
1η] (1 and 2c in Proposition 4.D.4) or oscillates in [−σ̃2

1η, σ̃
2
1η] (3c in Proposi-

tion 4.D.4). Since A(t) and B(t) denote
√
3
3 σ̃2

0 ẽ0(t) and
√
2
2 σ̃2

1 ẽ1(t), respectively, this means that

lim supt→∞ |ẽ0(t)| = 2
√
3

3 η, and lim supt→∞ |ẽ1(t)| =
√

2η,

From the dynamics of (A,B) in the transient subpartitions described in Proposition 4.D.4, we

have the following corollary.

Corollary 4.D.6. Suppose that ẽ0 enters [−
√

3η,
√

3η] at iteration t, then A starts exhibiting a

2-periodic oscillation at most 3 iterations after t. This means that the maximum difference between

the number of positive and negative A’s after iteration t is 2:∣∣∣∣∣
∞∑

i=t+1

I {sign[A(i)] = 1} − I {sign[A(i)] = −1}

∣∣∣∣∣ ≤ 2.

Dynamics of ẽ2 under signGD

We are now ready to analyze the dynamics of ẽ2 through the behavior of ẽ0 and ẽ1. Particularly,

we demonstrate that the final value of |ẽ2| is affected by the magnitude of |ẽ0(0)| and |ẽ1(0)|. First,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 76

notice that the update direction along ẽ2 follows the opposite of the sign of ẽ0, and at every iteration

when |A(t)| ≤ |B(t)|, there is a non-zero weight adaptation for ẽ2. Once the oscillation begins for ẽ0,

the dynamics of ẽ0 and ẽ2 become similar. Consider T as the first iteration when |ẽ0| drops below√
3η. We then have

lim sup
t→∞

|ẽ2(t)| =

∣∣∣∣∣ẽ2(T) + η

∞∑
t=T+1

{
I {|A(t)| < |B(t)|} −

√
6

3
+ I {|A(t)| = |B(t)|} −

√
6

6

}
sign[ẽ0(t)]

∣∣∣∣∣
≤ |ẽ2(T)|+

√
6

3
η

∣∣∣∣∣
∞∑

t=T+1

sign[ẽ0(t)]

∣∣∣∣∣
≤ |ẽ2(T)|+ 2

√
6

3
η, (4.22)

where we use Corollary 4.D.6 to upper bound the absolute value of the summation of the sign of

ẽ0 after the T -th iteration in the last inequality. This means that after T iterations, ẽ2 stays in

an O(η) neighborhood of ẽ2(T); in other words, w̃2 stays in an O(η) neighborhood of w̃2(T). Also,

notice that (4.22) does not include I {|A(t)| > |B(t)|} since ẽ2 is updated only when |A(t)| ≤ |B(t)|,
as shown in Table 4.9.

Define ∆w̃2 as the sum of all the updates in w̃2 up to the T -th iteration:

∆w̃2 ≜ η

T−1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3
+ I {|A(t)| = |B(t)|} −

√
6

6

}
sign[ẽ0(t)],

which leads to

lim sup
t→∞

|w̃2(t)| = |w̃2(T) + O(η)| = |w̃2(0) + ∆w̃2 + O(η)| , (4.23)

where w̃2(0) is the weight at initialization.

Putting (4.23) together with Remark 4.D.5, the asymptotic solution found by signGD is

w̃signGD =
[
w̃∗

0 , w̃
∗
1 , w̃2(0) + ∆w̃2

]⊤
+ O(η).

From the perspective of training under the standard risk, the signGD solution is close to the

optimum. Specifically, its standard risk is

Rs(w̃
signGD) = E

[
ℓ(X̃, Y ; w̃signGD)

]
=

1

2
E
[〈

X̃ , w̃signGD − w̃∗
〉2

]
=

1

2

(
E
[
X̃2

0

]
(w̃signGD

0 − w̃∗
0)2 + E

[
X̃2

1

]
(w̃signGD

1 − w̃∗
1)2

)
(4.24)

=
1

2

(
σ̃2
0O(η2) + σ̃2

1O(η2)
)

= O((σ̃2
0 + σ̃2

1)η2),

where E
[
X̃0X̃1

]
= 0 in (4.24) due to the diagonality of Σ̃. Note that the standard risk of the GD

solution is exactly zero; and by choosing a small learning rate η, the standard risk of the signGD

solution can be close to zero as well. However, their adversarial risks are very different. Specifically,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 77

the adversarial risk of the asymptotic signGD solution is

Ra(w̃signGD) =
ϵ2

2
||w̃signGD||22 =

ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + (w̃2(0) + ∆w̃2)2 + O(η2)

}
.

Consider a sufficiently small learning rate: η ≪ min{w̃∗
0 , w̃

∗
1 , w̃2(0) + ∆w̃2}. This means that

the contribution from O(η2) in Ra(w̃signGD) is negligible. Then the adversarial risk of the signGD

solution becomes

Ra(w̃signGD) =
ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + (w̃2(0) + ∆w̃2)2

}
. (4.25)

We can compare it with the adversarial risk of the asymptotic solution found by GD under the

same setup:

Ra(w̃GD) =
ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + w̃2

2(0)
}
. (4.26)

The main difference between the two adversarial risks in (4.25) and (4.26) is the difference in

weights learned at the irrelevant frequency. Since their use of irrelevant frequency in the data is

under-constrained, neither algorithm can reduce w̃2 to zero, thereby neither solution is the most

robust standard risk minimizer. The GD solution is sensitive to weight initialization. To understand

the ∆w̃2 term in the signGD solution, first recall that T denotes the first iteration when |ẽ0| drops

below
√

3η (or |A| drops below σ̃2
0η), and from Corollary 4.D.6 we know that w̃0 starts oscillation at

most 3 iterations after T . Recall in (4.23) that O(η) has been utilized to account for the maximum

sign variations, this means that we can consider oscillations which begin immediately after the T -th

update. Suppose that η is small so the sign of ẽ0 would not change before the oscillation starts, then

we have

|∆w̃2| =

∣∣∣∣∣η
T−1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3
+ I {|A(t)| = |B(t)|} −

√
6

6

}
sign[ẽ0(t)]

∣∣∣∣∣
=

∣∣∣∣∣η
T−1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3
+ I {|A(t)| = |B(t)|} −

√
6

6

}∣∣∣∣∣ ,
which leads to

|∆w̃2| = Cη

T−1∑
t=0

I {|A(t)| ≤ |B(t)|} , (4.27)

where C denotes some value between
√
6
6 and

√
6
3 , which correspond to always using the smaller and

the larger updates, respectively.

Dynamics of |∆w̃2| under signGD

There are two factors that can affect the magnitude of
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} in (4.27): 1) the

relative magnitudes between σ̃2
0 and σ̃2

1 , and 2) the initial values of |ẽ0| and |ẽ1|, or equivalently,

the initial values of |A| and |B|. To analyze this, we divide the set of values of (|A(t)| , |B(t)|) into

several partitions: the set of [0, σ̃2
0η]×R and R× [0, σ̃2

0η] is partitioned into P1 and P2, and the set of

[σ̃2
0η,∞)× [σ̃2

0η,∞) is partitioned differently based on the value of
σ̃2
1

σ̃2
0
. Consider a line that travels

through the point of (σ̃2
0η, σ̃

2
0η) and has a slope of 3

σ̃2
1

σ̃2
0
. The ratio between σ̃2

0 and σ̃2
1 is particularly

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 78

Figure 4.9: Analyzing the value of
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} in (4.27) by partitioning the set
of values of (|A(t)| , |B(t)|), and the relative magnitude between σ̃2

0 and σ̃2
1 determines

the partitions on which the analysis is based. Specifically, the analysis is based on partitions

P1, P2, P3 and P4, when
σ̃2
1

σ̃2
0
> 1

3 (left), and on P1, P2, P5 and P6, when
σ̃2
1

σ̃2
0
< 1

3 (right). The

three smaller subpartitions are subsets of the main partition, i.e., P31 ⊂ P3 and P41, P42 ⊂ P4, and
they are used in the analysis of P4. The value of

∑T−1
t=0 I {|A(t)| ≤ |B(t)|} when (|A(0)| , |B(0)|) is

initialized in each partition is summarized in Proposition 4.D.7. The two plots are created with
σ̃2
0 = σ̃2

1 (left) and σ̃2
0 = 9σ̃2

1 (right), respectively. Note that those values are chosen for illustration
purposes and do not affect the generality of the result. In both plots, the red dashed line corresponds

to |B(t)| = 3
σ̃2
1

σ̃2
0
|A(t)| − (3σ̃2

1 − σ̃2
0)η for |A(t)| ∈ (σ̃2

0η,∞), and the yellow dashed line corresponds

to |B(t)| = |A(t)|. The pink dashed line is parallel to the red dashed line with a horizontal gap of
σ̃2
0η.

useful in analyzing |∆w̃2| because understanding the position of (|A(0)| , |B(0|) relative to such a

line can lead to the value of |B(T − 1)|, that is, the value of |B| before the oscillation of |A| begins.

Since |B| is updated only when |A| ≤ |B|, we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} = |B(0)|−|B(T−1)|
σ̃2
1η

. The

definitions of partitions are

• P1 =
{

(A,B) : |A| < σ̃2
0η

}
,

• P2 =
{

(A,B) : |A| > σ̃2
0η and |B| < σ̃2

0η
}

,

• When
σ̃2
1

σ̃2
0
> 1

3 ,

– P3 =
{

(A,B) : σ̃2
0η < |A| < σ̃2

0

3σ̃2
1
(|B|+ (3σ̃2

1 − σ̃2
0)η)

}
,

∗ P31 =
{

(A,B) : (A,B) ∈ P3 and |A|+ σ̃2
0η > |B|

}
,

– P4 =
{

(A,B) : σ̃2
0η < |B| < 3σ̃2

1

σ̃2
0
|A| − (3σ̃2

1 − σ̃2
0)η

}
,

∗ P41 =
{

(A,B) : (A,B) ∈ P4 and |B| < |A| < 2σ̃2
0η

}
,

∗ P42 =

{
(A,B) : (A,B) ∈ P4 and |A| > |B| and 2σ̃2

0η < |A| < |B|+(3σ̃2
1−σ̃2

0)η

3
σ̃2
1

σ̃2
0

+ σ̃2
0η

}
,

• When
σ̃2
1

σ̃2
0
< 1

3 ,

– P5 =
{

(A,B) : σ̃2
0η < |A| < |B|

}
,

– P6 =
{

(A,B) : σ̃2
0η < |B| < |A|

}
.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 79

An illustration of partitions is provided in Figure 4.9, where the two plots demonstrate the two

different ways of dividing the set of [σ̃2
0η,∞) × [σ̃2

0η,∞) based on the value of
σ̃2
1

σ̃2
0
. The connection

between the values of (|A(0)| , |B(0)|) and the size of
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} is summarized in the

next proposition.

Proposition 4.D.7. Denote T as the iteration when |ẽ0| drops below
√

3η. The value of
∑T−1

t=0 I {|A(t)| ≤ |B(t)|}
depends on the relative magnitude between σ̃2

0 and σ̃2
1, and the initial values of |A| and |B|. Specifi-

cally, we have

T−1∑
t=0

I {|A(t)| ≤ |B(t)|} =



0 if (|A(0)| , |B(0)|) ∈ (P1

⋃
P2)

T if
σ̃2
1

σ̃2
0
> 1

3 and (|A(0)| , |B(0)|) ∈ P3

|B(0)|
σ̃2
1η

+ [
−2σ̃2

0

σ̃2
1

,
−σ̃2

0

σ̃2
1

] if
σ̃2
1

σ̃2
0
> 1

3 and (|A(0)| , |B(0)|) ∈ P4

T if
σ̃2
1

σ̃2
0
< 1

3 and (|A(0)| , |B(0)|) ∈ P5

|B(0)|−σ̃2
0η

1
3 σ̃

2
0η

if
σ̃2
1

σ̃2
0
< 1

3 and (|A(0)| , |B(0)|) ∈ P6.

Proof.

We divide the analysis into two main parts: when
σ̃2
1

σ̃2
0
> 1

3 and
σ̃2
1

σ̃2
0
< 1

3 , corresponding to the left and

right figures in Figure 4.9. For each case, we analyze the behavior of (A,B) within the partition.

Analysis of P1: For any (|A(0)| , |B(0)|) in P1, since |A(0)| is already below σ̃2
0η, we have T = 1

because A remains in P1. This means that
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} = 0.

Analysis of P2: For any (|A(0)| , |B(0)|) in P2, |A| decreases until it drops below σ̃2
0η, while |B|

remains the same. This means that |A| remains smaller than |B|, so we have I {|A(t)| ≤ |B(t)|} = 0

for all t ∈ {0, . . . , T − 1}. Therefore, we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} = 0.

Next, the partitions of the set of [σ̃2
0η,∞]× [σ̃2

0η,∞] are defined differently based on the values

of
σ̃2
1

σ̃2
0

compared to 1
3 . This is because when

σ̃2
1

σ̃2
0
> 1

3 , it is possible for any (|A(t)| , |B(t)|) satisfying

|A(t)| < |B(t)|, there exists t′ > t such that |A(t′)| > |B(t′)|. In other words, (|A| , |B|) can oscillate

above and below the line defined by |A| = |B|, and this makes analyzing (4.27) difficult. However,

when
σ̃2
1

σ̃2
0
< 1

3 , any (|A(t)| , |B(t)|) that satisfies |A(t)| < |B(t)| will stay above the line defined by

|A| = |B|, and this means that |A| will always get updated by
σ̃2
0η
3 and |B| will always get updated by

σ̃2
1η. Because of this different behavior, we analyze these two cases separately by defining different

partitions. This corresponds to the left and right figures in Figure 4.9. When
σ̃2
1

σ̃2
0
> 1

3 , the set of

[σ̃2
0η,∞]× [σ̃2

0η,∞] is partitioned into P3 and P4.

Analysis of P3: By definition, any (|A(t)| , |B(t)|) in P3 satisfies 3
σ̃2
1

σ̃2
0
|A(t)| < |B(t)|+ (3σ̃2

1 − σ̃2
0)η.

Starting from any (|A(0)| , |B(0)|) in P3, the values of |A| and |B| decrease at a rate of 1
3 σ̃

2
0η and σ̃2

1η,

respectively, and this means that two sides of the inequality decrease at the same rate. Hence, the

sequence (|A(t)| , |B(t)|) remains in P3 for all 0 ≤ t < T −1. This means that I {|A(t)| ≤ |B(t)|} = 1

for all t ∈ {0, . . . , T − 1}. Therefore, we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} = T .

Analysis of P4: Since (|A(T − 1)| , |B(T − 1)|) must be in P1, we can understand the value of∑T−1
t=0 I {|A(t)| ≤ |B(t)|} by considering how any (|A(0)| , |B(0)|) in P4 is transitioned to (|A(T − 1)| , |B(T − 1)|)

in P1. Also, starting from any (|A(t)| , |B(t)|) in P4, we know that |A(t)| − |A(t + 1)| > 0 and

|B(t)|− |B(t + 1)| ≥ 0; hence, the transition from P4 to P1 must be described in one of the following

scenarios.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 80

Transition to P2 then to P1: In this case, the value of |B| must first drop below σ̃2
0η. Since

|B| decreases only when |A| ≤ |B|, this means that, regardless of the initial value of |A|, the same

number of updates is required to reduce |B(0)| to σ̃2
0η, which is

|B(0)|−σ̃2
0η

σ̃2
1η

, and in each update, the

condition I {|A(t)| ≤ |B(t)|} is satisfied.

Transition to P1 directly: For any (|A(t)| , |B(t)|) in P4 that satisfies |B(t)| > |A(t)| (above the

yellow dashed line in Figure 4.9), since the values of |A| and |B| decrease at a rate of 1
3 σ̃

2
0η and

σ̃2
1η, respectively, (|A(t + 1)| , |B(t + 1)|) cannot cross the red dashed line which has a slope of 3

σ̃2
1

σ̃2
0
.

Now let us consider any (|A(t)| , |B(t)|) in P4 that satisfies |B(t)| < |A(t)| (below the yellow dashed

line). In this case, |A| decreases by σ̃2
0η, and the only scenario where (|A(T − 1)| , |B(T − 1)|) ends

up in P1 is when σ̃2
0η < |A(T − 2)| < 2σ̃2

0η. That is, (|A(T − 2)| , |B(T − 2)|) is in P42. When this

happens, we have σ̃2
0η < |B(T − 2)| < 2σ̃2

0η; and because there is no update in |B(T − 2)|, we have

σ̃2
0η < |B(T − 1)| < 2σ̃2

0η. Therefore, we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} ∈ [
|B(0)|−2σ̃2

0η

σ̃2
1η

,
|B(0)|−σ̃2

0η

σ̃2
1η

].

Transition to P3 then to P1: Let us first consider the transition from P4 to P3. Consider

t′ such that (|A(t)| , |B(t)|) is in P4 for 0 ≤ t < t′ and (|A(t′)| , |B(t′)|) is in P3. Following

the above analysis (direct transition to P1), we know that (|A(t′ − 1)| , |B(t′ − 1)|) must satisfy

|A(t′ − 1)| > |B(t′ − 1)|, where t′ − 1 is the iteration before transitioning to P3. Also, we know that

|A(t′ − 1)| > 2σ̃2
0η otherwise (|A(t′)| , |B(t′)|) would be in P1. The last condition for such a transition

to happen is that the horizontal distance from |B(t′ − 1)| to the line of |B| = 3
σ̃2
1

σ̃2
0
|A| − (3σ̃2

1 − σ̃2
0)η

(the red dashed line) must be smaller than σ̃2
0η. That is, (|A(t′ − 1)| , |B(t′ − 1)|) is in P41, and

(|A(t′)| , |B(t′)|) is in P31. After the transition to P3, the values of |A| and |B| decrease at a

rate of 1
3 σ̃

2
0η and σ̃2

1η, respectively, and |B(T − 1)| has a range of [σ̃0η, 2σ̃0η]. Therefore, we have∑T−1
t=0 I {|A(t)| ≤ |B(t)|} ∈ [

|B(0)|−2σ̃2
0η

σ̃2
1η

,
|B(0)|−σ̃2

0η

σ̃2
1η

].

When
σ̃2
1

σ̃2
0
< 1

3 , the set of [σ̃2
0η,∞)× [σ̃2

0η,∞) is partitioned into P5 and P6, as shown in the right

figure of Figure 4.9.

Analysis of P5: Starting from any (|A(0)| , |B(0)|) in P5, the values of |A| and |B| decrease at a

rate of 1
3 σ̃

2
0η and σ̃2

1η, respectively. However, since
σ̃2
1

σ̃2
0
< 1

3 , there will not be any 0 ≤ t ≤ T − 1

where |A(t)| > |B(t)|. This means that I {|A(t)| ≤ |B(t)|} = 1 for all t ∈ {0, . . . , T − 1}. Therefore,

we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} = T .

Analysis of P6: Starting from any (|A(0)| , |B(0)|) in P6, the values of |A| decreases until it

becomes smaller than |B(0)|. Suppose that this happens at iteration t′, that is, |A(t′)| < |B(0)|.
Starting from (|A(t′)| , |B(t′)|) in P5, |A| starts to decrease by

σ̃2
0η
3 and |B| starts to decrease by σ̃2

1η.

Since
σ̃2
1

σ̃2 < 1
3 , this means that (|A(t)| , |B(t)|) stays in P5 for t ∈ {t′, . . . , T − 2}, until it goes to

P1 when |A(T − 1)| < σ̃2
0η. Therefore, we know that the total change in |A| since t′-th iteration is

|A(t′)| − σ̃2
0η = |B(0)| − σ̃2

0η. Since |A| can only be updated by the amount of
σ̃2
0η
3 in P5, we have∑T−1

t=0 I {|A(t)| ≤ |B(t)|} =
|B(0)|−σ̃2

0η
1
3 σ̃

2
0η

.

We now use this analysis on the behavior of
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} to compute |∆w̃2|, which

plays a role in the adversarial risk of signGD, as shown in (4.25). For the initial values of (|A| , |B|)
to be in P1 and P2, the initial errors must be small. However, consider a dataset with a strong task-

relevant correlation between the relevant frequency component of the data and the target, a realistic

scenario as we discussed in Section 4.3.2. In this case, |w̃∗
0 | and |w̃∗

1 | can be large. Additionally, with

a weight initialization around zero, such as in methods by He et al., 2015 and Glorot et al., 2010,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 81

the initial error |ẽ0(0)| and |ẽ1(0)| can be large and close to |w̃∗
0 | and |w̃∗

1 | when |w̃∗
0 | ≫ |w̃0(0)| and

|w̃∗
1 | ≫ |w̃1(0)|. Because of this, it is less likely for the initial values of |A(0)| and |B(0)| to be in the

P1 partition in Proposition 4.D.7.

Moreover, it is discussed in Section 4.3.1 that the distribution of spectral energy heavily concen-

trates at the low end of the frequency spectrum and decays quickly towards higher frequencies. Since

σ̃2
i is interpreted as the expected energy of a random variable at the i-th frequency, it is reasonable

to expect that
σ̃2
1

σ̃2
0
< 1

3 and this allows us to further narrow down to initialization of (|A| , |B|) in P5

and P6.

The proportional relationship between the size of (4.27) and the magnitude of |ẽ0| and |ẽ1| when
σ̃2
1

σ̃2
0
< 1

3 and (|A| , |B|) is initialized in P5 or P6 can be described in the following proposition.

Proposition 4.D.8. Suppose that the ratio between σ̃2
0 and σ̃2

1 satisfies
σ̃2
1

σ̃2
0
< 1

3 . The magnitude of

|∆w̃2| depends on the initial values of |ẽ0| and |ẽ1|, and the resulting |A(0)| and |B(0)|. Specifically,

we have

|∆w̃2| =

{√
3C |ẽ0(0)| if |A(0)| < |B(0)|

3
√
2σ̃2

1

2σ̃2
0

C |ẽ1(0)| if |A(0)| > |B(0)| ,
(4.28)

where C ∈ [
√
6
6 ,

√
6
3] and we neglect the contribution from η.

Proof. From Proposition 4.D.7, under the assumption that
σ̃2
1

σ̃2
0
< 1

3 , we have
∑T−1

t=0 I {|A(t)| ≤ |B(t)|} =

T when (|A(0)| , |B(0)|) ∈ P5, and this means that |∆w̃2| = CηT from (4.27). This also implies that

for t ∈ {0, . . . , T − 1}, we have |A(t)| < |B(t)| and |A(t)| = |A(0)| − t
3 σ̃

2
0η.

Since T is defined as the number of iteration required to reduce |A(0)| to σ̃2
0η, T is

|A(0)|−σ̃2
0η

1
3 σ̃

2
0η

,

and we have

|∆w̃2| = CηT = Cη
|A(0)| − σ̃2

0η
1
3 σ̃

2
0η

= 3C

√
3
3 σ̃2

0 |ẽ0(0)| − σ̃2
0η

σ̃2
0

= C(
√

3 |ẽ0(0)| − 3η).

From Proposition 4.D.7, when
σ̃2
1

σ̃2
0
< 1

3 and (|A(0)| , |B(0)|) is in P6, we have

|∆w̃2| = Cη
|B(0)| − σ̃2

0η
1
3 σ̃

2
0η

= 3C

√
2
2 σ̃2

1 |ẽ1(0)| − σ̃2
0η

σ̃2
0

= C(
3
√

2σ̃2
1

2σ̃2
0

|ẽ1(0)| − 3η).

Since the initial error |ẽ0(0)| and |ẽ1(0)| are close to |w̃∗
0 | and |w̃∗

1 |, (4.28) can be written as

|∆w̃2| ≈

{√
3C |w̃∗

0 | if |A(0)| < |B(0)|
3
√
2σ̃2

1

2σ̃2
0

C |w̃∗
1 | if |A(0)| > |B(0)|

(4.29)

Now we can consider the ratio between the adversarial risk of the standard risk minimizers found by

GD (4.26) and signGD (4.25) with a three-dimensional input space. We observe that the solution

found by signGD is more sensitive to perturbations compared to the GD solution:

Ra(w̃signGD)

Ra(w̃GD)
=

w̃∗2
0 + w̃∗2

1 + (w̃2(0) + ∆w̃2)2

w̃∗2
0 + w̃∗2

1 + w̃2
2(0)

≈ 1 +
∆w̃2

2

w̃∗2
0 + w̃∗2

1

,

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 82

where we neglect the contribution from w̃2(0) in the approximation since we have assumed that the

values of |w̃∗
0 | and |w̃∗

1 | are large compared to the initialized weight |w̃(0)2|. This leads to

Ra(w̃signGD)

Ra(w̃GD)
≈

1 + C3
w̃∗2

0

w̃∗2
0 +w̃∗2

1
if |A(0)| < |B(0)|

1 + C4
w̃∗2

1

w̃∗2
0 +w̃∗2

1
if |A(0)| > |B(0)| ,

where 1
2 ≤ C3 ≤ 2 and 3

4
σ̃4
1

σ̃4
0
≤ C4 ≤ 3

σ̃4
1

σ̃4
0
.

4.D.3 From Irrelevant Frequencies to Spatially Redundant Dimensions

We have demonstrated that when the use of irrelevant frequency is under-constrained, optimizing

the standard training objective can lead to solutions with zero standard risk but are sensitive to

perturbations. This section offers a spatial interpretation of the findings, where we illustrate that

signals with irrelevant frequencies contain spatially redundant dimensions when transformed into

the spatial domain. Both interpretations can be used to explain the vulnerability of the solutions.

To illustrate the concept of redundancy in the spatial domain, consider the synthetic dataset

with the distribution defined in Section 4.4.2 and the data has a structure of
{

(X̃0, X̃1, 0)
}

in the

frequency domain. Taking the DCT transformation of X̃, we see that the spatial representation of

the same dataset is {
(

√
1

3
X̃0 +

√
1

2
X̃1,

√
1

3
X̃0,

√
1

3
X̃0 −

√
1

2
X̃1)

}
,

where X̃0 and X̃1 are random variables with frequency interpretations. In the spatial domain, redun-

dancy refers to the existence of dimensions that are highly correlated with each other. The example

mentioned above illustrates that the presence of a single irrelevant frequency in the data distribution

corresponds to the existence of one redundant dimension in the spatial domain. Specifically, within

this three-dimensional dataset, it is possible to express any dimension as a linear combination of the

values at the other two dimensions.

This translation between spectral irrelevance and spatial redundancy can also be observed in

the learned weight. Consider a standard risk minimizer w̃∗ = (w̃∗
0 , w̃

∗
1 , 0), whose frequency-domain

representation is

w∗ = (

√
1

3
w∗

0 +

√
1

2
w∗

1 ,

√
1

3
w∗

0 ,

√
1

3
w∗

0 −
√

1

2
w∗

1).

Because of the irrelevance from w̃2, there are multiple other standard risk minimizers. In the

spatial domain, this means w∗ + w̃2w⃗2 with w⃗2 = (
√

1
6 ,−

√
2
3 ,
√

1
6) and any choice of w̃2 ∈ R is

still a valid standard risk minimizer.4 When the model trained by signGD has a large weight at w̃2,

this implies a large w̃2 for the weight in the spatial domain. Because w⃗2 and w∗ are orthogonal, we

have ∥w∗ + w̃2w⃗2∥2 = ∥w∗∥2 + |w̃2|, therefore, the weight norm increases as w̃2 gets large, and from

(4.10), models are more vulnerable.

It is important to realize that having irrelevant frequencies is merely a sufficient condition for

having spatially redundant features, but is not a necessary condition. For example, rearranging the

dimensions of x and w∗ in the above example still preserves the spatial redundancy in the dataset,

4The (
√

1
6
,−

√
2
3
,
√

1
6
) vector is the DCT basis for the w̃2 term, i.e., C⊤(0, 0, w̃2) = w̃2(

√
1
6
,−

√
2
3
,
√

1
6
).

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 83

and there are still infinitely many standard risk minimizers. However, it no longer guarantees zero

entries in x̃ and w̃∗.

4.E Additional Figures

In Figure 4.2, we visualize the energy distribution for CIFAR-100 and Imagenette, with each dataset

illustrated through four plots. The first plot’s (i, j) coordinate indicates the average amplitude,
1
N

∑N
n=1 |x̃n;(i,j)|, for the (i, j)-th basis across all N training images, where x̃n represents the DCT

transformation of the n-th image, xn, and x̃n;(i,j) represents the amplitude of the (i, j)-th basis in

the n-th sample. The second plot focuses on the diagonal elements of the first, showing the average

amplitude values,
{

1
N

∑N
n=1 |x̃n;(i,i)|

}
i=0,...,d−1

. The two plots are then drawn on a logarithmic scale

to highlight the pronounced concentration of energy around the low-frequency harmonics, while the

amplitudes for higher-frequency harmonics diminish significantly.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 84

0 10 20

0

5

10

15

20

25

Spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25
(i, i)-th DCT Frequency Basis

0

1

2

3

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20

0

5

10

15

20

25

Log scale spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25
(i, i)-th DCT Frequency Basis

3

2

1

0

1

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

1

2

3

3

2

1

0

1

a. MNIST

0 10 20

0

5

10

15

20

25

Spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25
(i, i)-th DCT Frequency Basis

0

2

4

6

8

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20

0

5

10

15

20

25

Log scale spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25
(i, i)-th DCT Frequency Basis

4

2

0

2

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

2

4

6

8

3

2

1

0

1

2

b. Fashion-MNIST

0 10 20 30

0

10

20

30

Spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

0

5

10

15

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20 30

0

10

20

30

Log scale spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

4

2

0

2

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

5

10

15

4

2

0

2

c. CIFAR-10

0 10 20 30

0

10

20

30

Spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

0

5

10

15

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20 30

0

10

20

30

Log scale spectral energy distribution
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

6

4

2

0

2

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

5

10

15

6

4

2

0

2

d. SVHN

0 100 200

0

50

100

150

200

Spectral energy distribution
 averaged over all training inputs

0 50 100 150 200
(i, i)-th DCT Frequency Basis

0

20

40

60

80

100

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 100 200

0

50

100

150

200

Log scale spectral energy distribution
 averaged over all training inputs

0 50 100 150 200
(i, i)-th DCT Frequency Basis

6

4

2

0

2

4

Lo
g

sc
al

e
m

ag
ni

tu
de

 o
f

 sp
ec

tra
l e

ne
rg

y

20

40

60

80

6

4

2

0

2

4

e. Caltech-101

Figure 4.10: Illustration of the spectral energy distribution in natural data. Distribution of
the spectral energy heavily concentrates at low frequencies and decays exponentially towards higher
frequencies.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 85

x |x| log|x|

1

2

3

4

5

6

4

2

0

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.0025

0.0050

0.0075

0.0100

0.0

0.2

0.4

0.6

0.8

1.0

0.025

0.050

0.075

0.100

0.0

0.2

0.4

0.6

0.8

1.0

0.01

0.02

0.03

0.04

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.025

0.050

0.075

0.100

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.11: Examples of modified images used in Observation I. (MNIST) We use a

threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of

DCT basis and their frequency basis. In a), we show the original image x and the magnitude of
its DCT basis |x̃| in both linear and log scale. In b), we show images modified by removing DCT
basis vectors whose magnitudes are in the bottom threshold percentage (row 1), the differences
between the modified images and the original image (row 2), the binary mask used to remove the
DCT basis: black means removed (row 3), images modified by removing high-frequency DCT basis
vectors (row 4), the differences between the modified images and the original image (row 5) and the
binary mask used to remove the DCT basis: black means removed (row 6). Notice that the masks in
row 6 only depends on the dimension of the images, whereas the masks in row 3 differs from images
to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 86

x |x| log|x|

2.5

5.0

7.5

10.0

12.5

8

6

4

2

0

2

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.001

0.002

0.003

0.0

0.2

0.4

0.6

0.8

1.0

0.01

0.02

0.03

0.04

0.0

0.2

0.4

0.6

0.8

1.0

0.01

0.02

0.03

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.02

0.04

0.06

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.12: Examples of modified images used in Observation I. (Fashion-MNIST) We

use a threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude

of DCT basis and their frequency basis. In a), we show the original image x and the magnitude of
its DCT basis |x̃| in both linear and log scale. In b), we show images modified by removing DCT
basis vectors whose magnitudes are in the bottom threshold percentage (row 1), the differences
between the modified images and the original image (row 2), the binary mask used to remove the
DCT basis: black means removed (row 3), images modified by removing high-frequency DCT basis
vectors (row 4), the differences between the modified images and the original image (row 5) and the
binary mask used to remove the DCT basis: black means removed (row 6). Notice that the masks in
row 6 only depends on the dimension of the images, whereas the masks in row 3 differs from images
to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 87

x |x| log|x|

2

4

6

8

6

4

2

0

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.01

0.02

0.03

0.0

0.2

0.4

0.6

0.8

1.0

0.02

0.04

0.06

0.0

0.2

0.4

0.6

0.8

1.0

0.025

0.050

0.075

0.100

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.13: Examples of modified images used in Observation I. (CIFAR-10) We use a

threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of

DCT basis and their frequency basis. In a), we show the original image x and the magnitude of
its DCT basis |x̃| in both linear and log scale. In b), we show images modified by removing DCT
basis vectors whose magnitudes are in the bottom threshold percentage (row 1), the differences
between the modified images and the original image (row 2), the binary mask used to remove the
DCT basis: black means removed (row 3), images modified by removing high-frequency DCT basis
vectors (row 4), the differences between the modified images and the original image (row 5) and the
binary mask used to remove the DCT basis: black means removed (row 6). Notice that the masks in
row 6 only depends on the dimension of the images, whereas the masks in row 3 differs from images
to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 88

x |x| log|x|

2.5

5.0

7.5

10.0

12.5

6

4

2

0

2

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.02

0.04

0.06

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.14: Examples of modified images used in Observation I. (CIFAR-100) We use

a threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of

DCT basis and their frequency basis. In a), we show the original image x and the magnitude of
its DCT basis |x̃| in both linear and log scale. In b), we show images modified by removing DCT
basis vectors whose magnitudes are in the bottom threshold percentage (row 1), the differences
between the modified images and the original image (row 2), the binary mask used to remove the
DCT basis: black means removed (row 3), images modified by removing high-frequency DCT basis
vectors (row 4), the differences between the modified images and the original image (row 5) and the
binary mask used to remove the DCT basis: black means removed (row 6). Notice that the masks in
row 6 only depends on the dimension of the images, whereas the masks in row 3 differs from images
to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 89

x |x| log|x|

2

4

6

8

8

6

4

2

0

2

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.005

0.010

0.015

0.0

0.2

0.4

0.6

0.8

1.0

0.01

0.02

0.03

0.0

0.2

0.4

0.6

0.8

1.0

0.02

0.04

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.025

0.050

0.075

0.100

0.0

0.2

0.4

0.6

0.8

1.0

0.025

0.050

0.075

0.100

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.15: Examples of modified images used in Observation I. (SVHN) We use a thresh-

old value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis

and their frequency basis. In a), we show the original image x and the magnitude of its DCT basis
|x̃| in both linear and log scale. In b), we show images modified by removing DCT basis vectors
whose magnitudes are in the bottom threshold percentage (row 1), the differences between the
modified images and the original image (row 2), the binary mask used to remove the DCT basis:
black means removed (row 3), images modified by removing high-frequency DCT basis vectors (row
4), the differences between the modified images and the original image (row 5) and the binary mask
used to remove the DCT basis: black means removed (row 6). Notice that the masks in row 6 only
depends on the dimension of the images, whereas the masks in row 3 differs from images to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 90

x |x| log|x|

20

40

60

80

100

10.0

7.5

5.0

2.5

0.0

2.5

a. Original Image.

nrg(x, 10) nrg(x, 30) nrg(x, 50) nrg(x, 70) nrg(x, 90)

|x nrg(x, 10)| × 10 |x nrg(x, 30)| × 10 |x nrg(x, 50)| × 10 |x nrg(x, 70)| × 10 |x nrg(x, 90)| × 10

Mnrg(x, 10) Mnrg(x, 30) Mnrg(x, 50) Mnrg(x, 70) Mnrg(x, 90)

freq(x, 10) freq(x, 30) freq(x, 50) freq(x, 70) freq(x, 90)

|x freq(x, 10)| × 10 |x freq(x, 30)| × 10 |x freq(x, 50)| × 10 |x freq(x, 70)| × 10 |x freq(x, 90)| × 10

Mfreq(10) Mfreq(30) Mfreq(50) Mfreq(70) Mfreq(90)

0.000

0.005

0.010

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.02

0.04

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.02

0.04

0.06

0.08

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

b. Modified Image.

Figure 4.16: Examples of modified images used in Observation I. (Caltech-101) We use

a threshold value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of

DCT basis and their frequency basis. In a), we show the original image x and the magnitude of
its DCT basis |x̃| in both linear and log scale. In b), we show images modified by removing DCT
basis vectors whose magnitudes are in the bottom threshold percentage (row 1), the differences
between the modified images and the original image (row 2), the binary mask used to remove the
DCT basis: black means removed (row 3), images modified by removing high-frequency DCT basis
vectors (row 4), the differences between the modified images and the original image (row 5) and the
binary mask used to remove the DCT basis: black means removed (row 6). Notice that the masks in
row 6 only depends on the dimension of the images, whereas the masks in row 3 differs from images
to images.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 91

0 2 4 6 8
Perturbed frequency band (r)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
cu

ra
cy

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns
 (%

)

FashionMNIST: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

1

2

3

4

5

6

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

FashionMNIST: Freq contribution to loss change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

1

2

3

4

5

6

7

8

Ac
cu

ra
cy

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns
 (%

)

CIFAR10: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

CIFAR10: Freq contribution to loss change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

10

20

30

40

Ac
cu

ra
cy

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns
 (%

)

SVHN: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

10

20

30

40

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

SVHN: Freq contribution to loss change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

10

20

30

40

50

60

Ac
cu

ra
cy

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns
 (%

)

Caltech101: Freq contribution to acc change
SGD
Adam
RMSProp

0 2 4 6 8
Perturbed frequency band (r)

0

50

100

150

200

Lo
ss

 c
ha

ng
e

un
de

r
 b

an
d-

lim
ite

d
pe

rtu
rb

at
io

ns

Caltech101: Freq contribution to loss change
SGD
Adam
RMSProp

Figure 4.17: The effect of band-limited Gaussian perturbations on the model (additional
figures). Perturbations from the lowest band, i.e., ∆x(0), have a similar effect on all the models,
despite being trained by different algorithms and exhibiting different robustness properties. On the
other hand, models’ responses vary significantly when the perturbation focuses on higher frequency
bands.

MNIST Fashion-MNIST

CIFAR-10 CIFAR-100

SVHN Caltech-101

Imagenette

Figure 4.18: Images perturbed by additive Gaussian white noise with different variance.
For each dataset, we select the largest variance value from Table 4.3.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 92

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

MNIST

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Fashion-MNIST

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

CIFAR-10

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

CIFAR-100

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

SVHN

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Caltech-101

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Imagenette

Figure 4.19: Images perturbed by ℓ2-norm bounded adversarial perturbation (Croce et
al., 2020). We select the largest ϵ value from Table 4.3 to generate ℓ2 bounded perturbations for
images in each dataset. We also compare perturbations generated using models trained by different
algorithms.

CHAPTER 4. UNDERSTANDING THE ROBUSTNESS DIFFERENCE BETWEEN OPTIMIZERS 93

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

MNIST

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Fashion-MNIST

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

CIFAR-10

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

CIFAR-100

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

SVHN

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Caltech-101

Perturbed inputs based
on SGD-trained model

Perturbed inputs based
on Adam-trained model

Perturbed inputs based
on RMSProp-trained model

Imagenette

Figure 4.20: Images perturbed by ℓ∞-norm bounded adversarial perturbation (Croce et
al., 2020). We select the largest ϵ value from Table 4.3 to generate ℓ∞ bounded perturbations for
images in each dataset. We also compare perturbations generated using models trained by different
algorithms.

Chapter 5

Understanding and Improving the

Hierarchical Adversarial

Robustness of DNNs

5.1 Introduction

In the previous chapter, we demonstrated that dataset properties play a crucial role in shaping model

robustness during training by interacting with the optimization process. In this chapter, we extend

this idea to the inference stage, showing that dataset properties can also influence the perceived

robustness of models.

As datasets grow in size and complexity, their hierarchical structure and the relationships between

classes become increasingly significant (Krizhevsky et al., 2012). In evaluating adversarial robust-

ness, the primary metric is often the model’s classification accuracy on perturbed inputs (Szegedy et

al., 2014). However, a key aspect often overlooked in the current literature is that while adversarial

examples can be harmful, not all misclassifications have equal consequences. The current paradigm

assumes that all errors caused by attacks are equally problematic, but in many contexts, this is not

the case. For example, misclassifying a pedestrian as a shrub is significantly more problematic than

misclassifying a traffic cone as a shrub. While both instances technically involve misclassification,

the former error carries far more severe consequences, potentially leading to harm or fatal accidents.

To address this, we introduce the concept of hierarchical adversarial robustness, which accounts

for variations in the impact of misclassification. Many real-world datasets exhibit a natural hierarchy

in their class structure, where fine-grained categories (which we call leaf-classes) can be grouped into

broader meta-classes. For example, in an autonomous driving dataset (Geiger et al., 2013; Cordts

et al., 2016), leaf classes might include pedestrians, bicycles, and cars, all belonging to a meta-class

representing non-stationary objects. We define hierarchical adversarial examples as those causing

misclassification within the same meta-class, such as mistaking a pedestrian for an automobile.

In this chapter, we explore the hierarchical adversarial robustness of deep neural networks (DNNs)

from both attack and defense perspectives. On the attack side, we demonstrate that most PGD-

This chapter is based on our work in Improving Hierarchical Adversarial Robustness of Deep Neural Networks.

94

https://arxiv.org/pdf/2102.09012

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 95

perturbed inputs remain correctly classified at the meta-class level, highlighting the need for tailored

attacks. To this end, we propose a hierarchical attack algorithm specifically designed to generate such

examples. On the defense side, we introduce a Hierarchical Adversarially Robust (HAR) network to

improve robustness. The HAR network splits the traditional end-to-end learning task into a primary

meta-class classification task, complemented by several leaf-class classification tasks. Each task is

trained independently with adversarial defenses, using only data relevant to its respective group.

Our empirical results show that this ensemble-based architecture significantly enhances hierarchical

adversarial robustness compared to standard approaches.

5.1.1 Contributions

Through this work, we make the following contributions:

• We introduce the concept of hierarchical adversarial examples: a special case of the standard

adversarial examples which causes mistakes at the meta-class level (Section 5.2).

• Our result shows that perturbations generated by PGD result in misclassifications that mostly

still fall within the same meta-class level, meaning that they are not effective in degrading

models’ hierarchical adversarial robustness (Section 5.3). This finding motivates us to develop

an attack method to generate hierarchical adversarial examples (Section 5.4).

• We demonstrate that the proposed hierarchical attack provides a more accurate empirical

representation of the hierarchical adversarial robustness of models (Section 5.6).

• We propose an ensemble-based approach, termed the Hierarchical Adversarially Robust (HAR)

network, to improve the hierarchical adversarial robustness of DNNs (Section 5.5).

• Our results demonstrate that HAR networks exhibit significantly improved robustness against

both ℓ∞ and ℓ2 perturbations on the CIFAR-10 and CIFAR-100 datasets (Section 5.6).

5.2 Hierarchical Adversarial Robustness

An important development accompanying the advancement of DNN is increasing complexity of

datasets, particularly in terms of the number of classes. For example, we have progressed from the

10-class MNIST dataset to the 1000-class ImageNet dataset. As dataset complexity grows, often

these datasets can be logically divided into several meta-classes, each encompassing multiple leaf

classes. Note that we use the term label and class interchangeably. In Table 5.1, we illustrate

the hierarchical structure of classes in both CIFAR-10 and CIFAR-100. In our experiments, we

also consider a medium-sized subset of CIFAR-100, designated as CIFAR-5x5, consisting of 25 leaf

classes categorized into 5 meta-classes.

Flat classification, such as the standard multi-class classification task, is the most common form

of classification in machine learning. In this setting, the goal is to predict a single label from a

set of mutually exclusive classes. Hierarchical classification, on the other hand, involves a two-

stage process where an input image is first categorized into meta-classes and subsequently into leaf

classes. For a detailed discussion on hierarchical classification, we refer the reader to the survey

by Silla et al. (2011), in which the terms “meta-class” and “leaf class” are also introduced. More

recent work leveraging the hierarchical structure of datasets falls under the domain of extreme

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 96

Table 5.1: Hierarchical structure of classes within the CIFAR-10 and CIFAR-100 dataset.
We examine predefined class hierarchies in the CIFAR-10 and CIFAR-100 datasets. In addition, we
analyze a medium-sized subset of CIFAR-100, designated as CIFAR-5x5, consisting of 25 leaf classes
categorized into 5 meta-classes.

Meta-class Leaf class

CIFAR-10
Animals bird, cat, deer, dog, frog, horse

Vehicles airplane, automobile, ship, truck

CIFAR-5x5

Fish aquarium fish, flatfish, ray, shark, trout

Vehicles bicycle, bus, motorcycle, pickup truck, train

People baby, boy, girl, man, woman

Trees maple, oak, palm, pine, willow

Insects bee, beetle, butterfly, caterpillar, cockroach

CIFAR-100

Aquatic mammals beaver, dolphin, otter, seal, whale

Fish aquarium fish, flatfish, ray, shark, trout

Flowers orchids, poppies, roses, sunflowers, tulips

Food containers bottles, bowls, cans, cups, plates

Fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers

Household electrical devices clock, computer keyboard, lamp, telephone, television

Household furniture bed, chair, couch, table, wardrobe

Insects bee, beetle, butterfly, caterpillar, cockroach

Large carnivores bear, leopard, lion, tiger, wolf

Large man-made outdoor things bridge, castle, house, road, skyscraper

Large natural outdoor scenes cloud, forest, mountain, plain, sea

Large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

Medium-sized mammals fox, porcupine, possum, raccoon, skunk

Non-insect invertebrates crab, lobster, snail, spider, worm

People baby, boy, girl, man, woman

Reptiles crocodile, dinosaur, lizard, snake, turtle

Small mammals hamster, mouse, rabbit, shrew, squirrel

Trees maple, oak, palm, pine, willow

Vehicles 1 bicycle, bus, motorcycle, pickup truck, train

Vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

classification (Buvanesh et al., 2022; Gupta et al., 2021), which focuses on classification problems

with thousands or millions of labels (Bhatia et al., 2016).

Class hierarchies can be formed in different ways. One common approach is to assign meta-

classes based on taxonomy, as seen in datasets like CIFAR-10 and CIFAR-100, where classes are

grouped based on visual similarities. A more practical scenario is an application-driven meta-class

design. For instance, in autonomous driving, meta-classes might distinguish between “objects a

vehicle must avoid” and “objects not critical for collision avoidance”. Alternatively, meta-classes

can also be learned strategically to optimize the performance in a specific downstream task (Deng

et al., 2011). A closely related study, Chandrasekaran et al. (2019), also examines robustness in a

hierarchical setting, but its hierarchy is derived from feature-space clustering and the work focuses

only on improving robustness. On the other hand, we investigate hierarchical robustness from both

the adversary’s and defender’s perspectives, assuming a predefined class hierarchy.

Previous research on adversarial robustness, including both defenses or attacks, typically as-

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 97

sumes that all misclassifications are equally detrimental. However, this assumption fails to capture

the varying degrees of impact that different misclassifications can have in practice. For example,

in an autonomous driving system, mistaking a perturbed image of a traffic sign for a pedestrian

poses a significant safety risk, whereas confusing a bus with a pickup truck might have negligible

consequences for the system’s operation. Moreover, misclassifications across different meta-classes

can raise significant ethical concerns, particularly in datasets with hierarchical structures involving

sensitive attributes such as ethnicity, gender, disability, and age groups.

Mistakes across meta-classes lead to much more severe consequences compared to mistakes within

meta-classes. Given this distinction, we introduce the term hierarchical adversarial examples. These

are a subset of adversarial examples characterized by misclassifications that occur between leaf classes

originating from different meta-class.

Let us first define hierarchical adversarial examples to differentiate them from standard adver-

sarial examples. Consider a neural network for classification f(x) : Rd → Rc with a softmax as its

last layer, where d represents the input dimension and c the number of classes. The predicted class

for a given input x is determined by arg maxi f(x)i.

Consider a two-level hierarchical classification task where leaf classes are grouped into meta-

classes. While this hierarchy can be extended to include higher-level meta-classes, we will focus on a

simpler two-level structure for clarity and didactic purposes. The dataset is represented as {x, y, z}n,

where each entry includes an image x, its leaf class y, and corresponding meta-class z, with y ∈ z

indicating that leaf class y is part of meta-class z. In other words, each meta-class z is a set comprising

all the leaf classes that belong to it. Using CIFAR-10 from Table 5.1 as an example, we have zanimal =

{Cbird, Ccat, . . . , Chorse} as the animal meta-class and zvehicle = {Cairplane, Cautomobile, . . . , Ctruck} as

the vehicle meta-class. In this chapter, we focus on non-overlapping meta-classes for simplicity, i.e.,

zi ∩ zj = ∅ for i ̸= j. Given an input data x, let its ground-truth leaf and meta-class be y∗ and

z∗ respectively. In this framework, a hierarchical adversarial example is defined by meeting all the

following criteria.

• The unperturbed data x is correctly classified by the classifier: arg maxi F (x)i = y∗.

• The perturbed data x′ = x + δ is perceptually indistinguishable from the original data x.

• The perturbed data x′ is incorrectly classified: arg maxi F (x′)i = y′ where y′ ̸= y∗.

• The incorrectly assigned label y′ belongs to a different meta-class, i.e., y′ ̸∈ z∗.

Note that the first three criteria outlined suffice to define standard adversarial examples, while

hierarchical adversarial examples represent a specific subset of all adversarial examples by having

the fourth property. We also highlight that measuring perceptual distance can be challenging (Li

et al., 2003), thus the second property is often replaced by limiting that the adversary can only

modify any input x to x + δ with δ ∈ ∆, as previously discussed in Chapter 2. In this chapter, we

focus on ℓ∞- and ℓ2-norm perturbations.

5.3 Untargeted PGD’s Ineffectiveness in Degrading Hierar-

chical Adversarial Robustness

To motivate the development of a new attack algorithm for generating hierarchical adversarial exam-

ples, we begin with an empirical analysis of the errors made by models on both clean and perturbed

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 98

Table 5.2: Percentage of the misclassified inputs that are still correctly classified at
the meta-class level (%). We calculate the percentage of inputs misclassified at the leaf level
yet still correctly classified at the meta-class level. An important observation is that for images
misclassified at the leaf class level, whether they are perturbed or unperturbed does not significantly
change the likelihood of correct classification at the meta-class level. This shows that untargeted
PGD perturbations are ineffective in degrading hierarchical robustness. All results presented in this
chapter are obtained from the average of three independent runs.

Method
CIFAR-10 CIFAR-100

Clean PGD20 Clean PGD20

Standard 84.46 80.00 33.71 36.80

PGD10 83.75 75.56 35.57 39.06

TRADES 77.39 77.14 34.84 38.22

images. In Table 5.2, we show the conditional probability that an image is correctly at the meta-class

level, given that it has already been misclassified at the leaf-class level:

P(correct meta-class|incorrect leaf class),

where a larger value indicates that more mistakes occur within the same meta-class, suggesting

greater hierarchical robustness in the model. We analyze both unperturbed inputs and those per-

turbed by untargeted ℓ∞-norm constrained PGD20 perturbations with ϵ = 8
255 . The evaluation

includes three types of models: those trained with unperturbed data (Standard), those adversar-

ially trained with PGD10 perturbations (Madry et al., 2018) (PGD10), and those trained using

TRADES (Zhang et al., 2019) (TRADES).

Two important observations emerge from the results presented in Table 5.2. First, compared

to the likelihood of being classified under a random meta-class, which stands at 50% for CIFAR-10

and 5% for CIFAR-100, misclassifications are more likely to be within the same meta-class. Second,

for images misclassified at the leaf class level, whether they are perturbed or unperturbed does

not significantly change the likelihood of correct classification at the meta-class level. For instance,

in a TRADES-robustified model trained on CIFAR-10, approximately 77% of misclassified images,

whether clean or PGD-perturbed, are still correctly classified at the meta-class level. This result still

shows that given two misclassified clean and PGD-perturbed inputs, the chances of misclassification

at the meta-class level is similar. These findings motivate us to develop a new approach for generating

hierarchical adversarial perturbations.

5.4 Generating Hierarchical Adversarial Perturbations

In Section 2.2 and 2.3, we discussed FGSM, BIM and PGD attacks, focusing on formulations for

their untargeted versions. In these algorithms, the specific class to which the perturbed input is

misclassified is irrelevant, as long as it is different from the true class. The similarity across these

attacks is their objective to find a perturbation that maximizes the loss function w.r.t. the true

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 99

label:

arg max
δ

ℓ(x + δ, y∗),

where y∗ is the true label of the input image x.

Targeted attacks, on the other hand, are pertinent in scenarios where the specific misclassified

class matters. For these attacks, the objective is:

arg min
δ

ℓ(x + δ, y),

where y ̸= y∗ is the specified target label, different from the ground truth label y∗.

Results from the previous section show that untargeted PGD attacks are not effective at gen-

erating adversarial examples that cause misclassifications at the meta-class level. To overcome this

limitation, we introduce a variant of the PGD algorithm specifically designed to find hierarchical

adversarial examples. Let x′
t denote the perturbed input at iteration t, we define:

x′
t+1 = ΠB∞(x,ϵ) {x′

t − α sign (∇xℓ(x
′
t, ŷ))} (5.1)

where ŷ is a target class chosen from a different meta-class, i.e., ŷ ̸∈ z∗. We use the same random

initialization as used in the vanilla PGD: x′
0 = ΠB∞(x,ϵ){x + ϵδ}, where each dimension of δ is

independently sampled from a uniform distribution U(−1, 1).

An important factor in generating hierarchical adversarial examples is the choice of the target

leaf class. We adopt the two target selection strategies proposed in Carlini et al. (2017). The first is

an average-case approach, where the target class is randomly selected from all eligible leaf classes.

This method does not require additional computational resources beyond those used for vanilla

PGD, although it may not always result in successful attacks. In our work, we consider a worst-case

approach that iterates through all candidate leaf classes as potential targets. This attack proceeds

until it either achieves a successful misclassification or exhausts all candidate classes.

The procedure for generating ℓ∞-norm constrained hierarchical adversarial examples is summa-

rized in Algorithm 5.1. We see that lines 2–5 closely resemble the standard PGD algorithm, with

the key difference being the iterative target class selection implemented through the for loop in line

1. The algorithm terminates either upon successfully generating a hierarchical adversarial example

(line 11) or when all candidate leaf classes have been exhausted (line 7).

5.5 Hierarchical Adversarial Robust Network

The visual separability between meta-classes can be highly uneven, making some meta-classes more

challenging to distinguish than others. This variation motivates the use of an ensemble of models in

a “local classifier per node” approach, leveraging dedicated classifiers for specific leaf classes within

each meta-class (Silla et al., 2011). The primary advantage of this approach is its use of local

information to develop specialized classifiers for individual leaf classes within each meta-class.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 100

Algorithm 5.1: Generating ℓ∞-norm constrained hierarchical adversarial examples.

Input : A pair of input data (x, y∗), where the leaf class y∗ belongs to the meta-class z∗;
S = {y | y ̸∈ z∗}, a set comprising all leaf classes that do not belong to the
meta-class z∗; a model F (·); a loss function ℓ(·); an ℓ∞-norm constraint ϵ; the
number of PGD iterations k; PGD step-size α.

1 for ŷ ∈ S do

2 x′
0 ← ΠB∞(x,ϵ){x + ϵδ}, where δ ∼ U([−1, 1]

d
)

3 for t = 0, . . . , k − 1 do
4 x′

t+1 = ΠB∞(x,ϵ) {x′
t − α sign (∇xℓ(x

′
t, ŷ))}

5 end
6 if arg maxi F (x′

k)i = ŷ then
7 Terminate (successful attack)
8 else
9 S ← S \ ŷ

10 if S is empty then
11 Terminate (failed attack)
12 end

13 end

14 end

5.5.1 Network Design

Building on this concept, we propose a Hierarchical Adversarial Robust (HAR) network that de-

composes the end-to-end learning task into two distinct parts. First, a single classifier is used for

classifying meta-classes. Subsequently, within each meta-class, a separate classifier is used for the

leaf classes. This architecture improves the hierarchical adversarial robustness of the network by

allowing independent training of each component using adversarial defense techniques. The final

probability distribution for all leaf classes is calculated based on Bayes’ Theorem. The HAR net-

work benefits from a robustified meta-classifier that improves robustness across meta-classes, and

multiple robustified leaf classifiers that improve robustness among visually similar leaf classes.

This design mirrors the hierarchical structure of the dataset, where the leaf classes are grouped

into meta-classes. Using Bayes’ Theorem, the probability for leaf classes can be computed as follows:

P (y | x) = P (y | x, z)P (z | x).

Here, P (y | x, z) represents the output of the leaf classifier, and P (z | x) represents the output of

the meta-classifier. This formulation allows us to compute the probability distribution across all leaf

classes by combining the predictions from the respective classifiers.

5.5.2 Inference

Given an input x, let M(x) denote the output of the meta-classifier, where M(x)i represents the

probability of the i-th meta-class. Similarly, let Li(x) denote the output of the i-th leaf classifier,

with Li(x)j indicating the probability of the j-th leaf class within the i-th meta-class. Assuming

that the meta-classes are non-overlapping (Section 5.2), the output of the network is given by

F (x) = [M(x)1L1(x)1, . . . ,M(x)1L1(x)k1
, . . . ,M(x)CLC(x)1, . . . ,M(x)CLC(x)kC

] , (5.2)

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 101

...

LCPeople

...

Final
Prediction

LCVehicle

LCFish

MC

 Fish
 aquarium fish, flatfish, ray, shark, trout

meta-class
leaf class

 Vehicle
 bicycle, bus, motorbike, pickup truck, train

meta-class
leaf class

 People
 baby, boy, girl, man, woman

meta-class
leaf class

(5.2)

Figure 5.1: Overview of the HAR Network. For clarity, we use ‘MC’ to denote the meta-
classifier and ‘LC’ for the leaf-classifier in the diagram. The meta-classifier is trained to predict the
meta-classes, while the leaf classifiers are trained to predict the leaf classes within their respective
meta-classes. The final prediction of the HAR network is computed using (5.2), which integrates
outputs from the MC and the respective LCs.

where C represents the total number of meta-classes and kC represents the number of leaf classes

within the C-th meta-class.

One advantage of this modular network design is that it allows for training each network using

adversarial defense techniques tailored to improving robustness specific to their respective classes. In

particular, we use a robustified meta-classifier designed specifically to improve robustness between

meta-classes, which contributes to an overall improvement in hierarchical adversarial robustness as

we demonstrate in our experiments.

5.5.3 Training

Each model within the HAR network is trained independently. The meta-classifier is trained using

the entire dataset, labeled with meta-classes, represented as {x, z}. Subsequently, the leaf-classifiers

are trained using their corresponding subsets of the dataset, represented as {x, y}. This modular

structure allows for parallel training of the different components of the HAR network.

5.6 Experiments

In this section, we perform a series of experiments to evaluate the hierarchical adversarial robustness

of the HAR network. We compare its hierarchical robustness against flat models when subjected to

both the standard PGD attack and our proposed hierarchical PGD attack. We focus on evaluations

based on ℓ∞-norm constrained attacks on the CIFAR-100 dataset. Discussions and evaluations

related to ℓ2-norm constrained perturbations, as well as results for the smaller CIFAR-10 and CIFAR-

5x5 datasets, are provided in the appendix, with results that are consistent with those from the

ℓ∞-norm evaluations.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 102

5.6.1 Experiment Setup

Baseline flat models: We focus on ResNet10 and ResNet50 (He et al., 2016a). To establish base-

lines, we train ResNet50 using unperturbed data (Standard), 10-step untargeted PGD perturbations

(PGD10), and using TRADES (Zhang et al., 2019). In addition, we explore a targeted variant of

the PGD adversarial training (PGD10-T), where for a given training pair (x, y) with y ∈ z∗, per-

turbations are computed using a targeted PGD10 attack with targets uniformly sampled from leaf

classes outside the meta-class {y | y ̸∈ z∗}.
HAR models: For the HAR model, we use ResNet10 for both meta-classifier and leaf classifiers.

We opt for a lower-capacity ResNet10 in the HAR setup to minimize the difference in the number

of parameters compared to a single flat ResNet50. A detailed comparison of trainable parameters

is provided in Appendix 5.A. During the training of HAR models, all component networks (meta-

classifier and leaf classifiers) undergo the same adversarial defense approach. For instance, a HAR

network trained with TRADES comprises one meta-classifier and twenty leaf classifiers, all trained

using TRADES.

Training details: All models are trained for a total of 200 epochs, with an initial learning rate

of 0.1. The learning rate decays by an order of magnitude at epoch 100 and 150. We use a mini-

batch size of 128 for testing and training. We use SGD with momentum of 0.9 and a weight decay

of 2e-4. For TRADES, a hyperparameter sweep was conducted on the validation set to select the

model with the highest accuracy against untargeted ℓ∞ bounded PGD20 attacks. This optimization

configuration applies to both the flat models and all component models within the HAR network.

Metric: The results in this section are based on the accuracy at the meta-class level, where a

larger value indicates better robustness. For our proposed hierarchical attack, the reported accuracy

reflects the percentage of test data for which the attack fails to change the meta-class prediction to

the desired target, even after iterating through all eligible target labels. In other words, it remains

correct at the meta-class level. Given the large number of classes, we follow Dong et al. (2018) and

perform the hierarchical attack on 1000 randomly selected test data. All ℓ∞ adversarial examples

used for all evaluations are generated with ϵ = 8/255 and a step size of 2/255 (pixel values are

normalized to [0, 1]).

5.6.2 Evaluation of Hierarchical Adversarial Robustness Using Hierar-

chical PGD

We evaluate the hierarchical adversarial robustness of the HAR network against untargeted PGD

perturbations and the proposed hierarchical PGD perturbations, and compare with flat models. The

results are summarized in Table 5.3.

We first evaluate the effectiveness of the proposed hierarchical PGD attack. The results indicate

that this attack is more effective in degrading the hierarchical robustness of all tested models. For

instance, standard trained flat models, which maintain about 24% accuracy under vanilla untargeted

PGD perturbations, see their accuracy drop to 0% with the proposed hierarchical perturbation. Sim-

ilarly, adversarially trained flat models also exhibit a significant accuracy decline when subjected to

this attack. Therefore, a method that can accurately measure the hierarchical adversarial robustness

of models is needed, and our proposed attack offers a promising approach in this direction.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 103

Table 5.3: Evaluation of meta-class accuracy for flat models and HAR models on the
original CIFAR-100 test dataset, under ℓ∞-norm constrained untargeted and proposed
hierarchical PGD attacks (%). All perturbations are bounded by ϵ = 8/255. We evaluate both
flat models and HAR models under various training paradigms, with the definitions of all baseline flat
models provided in Section 5.6.1. Results show that the proposed hierarchical attack significantly
degrades the hierarchical robustness of all tested models, with the HAR network demonstrating
greater hierarchical robustness compared to flat models.

Method Clean
Untargeted Hierarchical

PGD20 PGD200 PGD20 PGD200

Flat

Standard 82.57 24.89 24.94 0.00 0.00

PGD10 69.81 37.80 37.02 22.60 21.98

PGD10-T 75.02 41.30 40.84 22.10 21.00

TRADES 67.67 41.47 41.27 27.00 26.80

HAR

Standard 81.24 29.25 29.27 4.00 3.30

PGD10 66.23 30.53 29.93 25.80 24.40

TRADES 62.49 32.86 32.36 30.20 29.90

5.6.3 Improving Hierarchical Adversarial Robustness with HAR

Next, we evaluate the hierarchical robustness of the HAR network in comparison to flat models. The

results demonstrate that the hierarchical robustness of the HAR network is significantly superior

to that of the flat models, a finding consistent across all models tested. Additionally, we observe

that training with targeted PGD10 perturbations does not yield a significant improvement over

conventional adversarial training with untargeted PGD10 perturbations. These results underscore

the effectiveness of the HAR network design in bolstering the hierarchical adversarial robustness of

models.

Under the white-box threat model, attackers with complete knowledge of the HAR network’s

internal structure can generate perturbations specifically targeting the meta-classifier. During our

evaluations, we investigate whether untargeted PGD adversaries, based on the meta-classifier, pro-

duce stronger hierarchical adversarial examples compared to those generated using the entire HAR

model. To generate these perturbations, we apply the standard untargeted PGD attack on the

meta-classifier with the objective:

max
δ

ℓ(M(x + δ), z∗),

where M is the meta-classifier and z∗ is the ground true meta-class of input x. We call the resulting

perturbation as PGD-Meta. We compare it with PGD perturbations generated using the entire

HAR network, referred to as PGD-HAR, and with the proposed hierarchical PGD attack, as shown

in Table 5.4. The result indicates that the perturbations generated using the meta-classifier are

weaker attacks compared to those generated using the full HAR network. This suggests that the

hierarchical adversarial robustness of the HAR network is not solely attributable to the robustness

of the meta-classifier, but rather to the combined robustness of the entire network configuration.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 104

Table 5.4: Evaluation of meta-class accuracy for the HAR models under ℓ∞-norm un-
targeted PGD perturbations generated based on the meta-classifier (%). Perturbations
generated based on the meta-classifier are denoted as PGD-meta. We also compare results from
Table 5.3: PGD-HAR, which represents perturbations generated using the entire HAR network, and
Hierarchical PGD, which refers to the proposed hierarchical PGD attack.

Method PGD-HAR Hierarchical PGD PGD-Meta

Standard 29.27 3.30 0.00

PGD10 29.93 24.40 29.96

TRADES 32.36 29.90 29.38

5.7 Conclusions

Not all mistakes caused by adversarial perturbations have equal consequences. In this study, we

introduced a novel concept called hierarchical adversarial robustness. For datasets where classes

can be grouped into meta-classes, we defined hierarchical adversarial examples as those leading

to misclassification at the meta-class level. In terms of attacks, we demonstrated that untargeted

PGD attacks are ineffective at generating hierarchical adversarial perturbations. Consequently,

we proposed a hierarchical PGD attack specifically designed to generate such examples. On the

defense side, we developed the HAR model to improve hierarchical adversarial robustness, utilizing

an ensemble approach with a meta-classifier and multiple leaf classifiers, each trained independently

using adversarial defense techniques. Our empirical results show that the HAR model significantly

increases hierarchical adversarial robustness.

5.7.1 Challenges and Limitations

Efficient Hierarchical Attack: In Section 5.4, we adopt the target selection strategies from Car-

lini et al. (2017): an average-case approach, which randomly selects a leaf class as the target, and

a worst-case approach, which iterates through all valid leaf classes as targets until all options are

exhausted. We employ the worst-case approach, which can be computationally expensive, especially

when the number of leaf classes is large. This underscores the need for developing a more efficient hi-

erarchical attack algorithm capable of identifying the target leaf class without exhaustively exploring

all options.

Efficient Model Design: One drawback of the proposed HAR model is the poor scalability with

the number of meta-classes. As the number of meta-classes increases, so does the number of leaf

classifiers, leading to greater model complexity. This can significantly increase both training time

and computational resource demands. Although our method enables potential parallel training

of each component model, developing a more efficient design that can handle a large number of

meta-classes without compromising performance remains an interesting avenue for future research.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 105

Table 5.5: Evaluation of meta-class accuracy for flat models and HAR models on the orig-
inal CIFAR-10 and CIFAR-5x5 test datasets, under ℓ∞-norm constrained untargeted
and proposed hierarchical PGD attacks (%). All perturbations are bounded by ϵ = 8/255.

Dataset Method Clean Untargeted PGD Hierarchical PGD

C
IF
A
R
-1
0 Flat

Standard 98.93 79.73 0.00

PGD10 97.49 87.40 72.00

TRADES 95.69 88.15 79.76

HAR

Standard 98.44 65.46 0.00

PGD10 95.57 86.38 79.52

TRADES 94.49 86.07 81.23

C
IF
A
R
-5
x
5 Flat

Standard 92.68 65.52 0.00

PGD10 86.08 70.68 42.20

TRADES 84.16 69.60 48.04

HAR

Standard 94.36 56.72 0.11

PGD10 89.16 63.32 52.32

TRADES 84.96 66.36 58.96

Appendices

5.A Comparison of Trainable Parameters

In our evaluations with CIFAR-100, we use ResNet50 for the vanilla models and multiple ResNet10

for the HAR network. We opt for a lower-capacity ResNet10 in the HAR setup to minimize the

difference in the number of parameters compared to a single flat ResNet50. While achieving an exact

match in parameter count is challenging with CIFAR-100, given its large number of meta-classes,

our goal is to mitigate concerns that improved hierarchical adversarial robustness might solely stem

from increased network complexity.

5.B Results on CIFAR-10 and CIFAR-5x5 with ℓ∞-norm Con-

strained Perturbations

To further address concerns regarding parameter count, we conduct evaluations on two smaller

datasets: the CIFAR-10 dataset, which includes 2 meta-classes and 10 leaf classes, and the medium-

sized CIFAR-5x5 dataset, featuring 5 meta-classes and 25 leaf classes. For both, we use ResNet50 for

flat models and multiple ResNet10 for the HAR network, resulting in the HAR network having fewer

parameters than the flat model. The results are summarized in Table 5.5, where we compare the

hierarchical robustness of flat models and the HAR network against ℓ∞-norm bounded untargeted

PGD and the proposed hierarchical PGD attack. These results align with findings from the CIFAR-

100 experiments, further demonstrating the HAR network’s effectiveness in improved hierarchical

adversarial robustness.

CHAPTER 5. UNDERSTANDING AND IMPROVING HIERARCHICAL ADVERSARIAL ROBUSTNESS 106

Table 5.6: Evaluation of meta-class accuracy for flat models and HAR models on the
original CIFAR-100 test dataset, under ℓ2-norm constrained untargeted and proposed
hierarchical PGD attacks (%). All perturbations are bounded by ϵ = 0.5. We evaluate flat
models and HAR models under various training paradigms.

Method Clean Untargeted PGD50 Hierarchical PGD50

Flat

Standard 82.57 32.17 0.10

PGD10 74.85 53.64 42.90

PGD10-T 78.58 52.97 38.50

HAR PGD10 73.31 48.78 44.00

Table 5.7: Evaluation of leaf-class accuracy for flat models and HAR models on the
CIFAR-10 test dataset.

Standard PGD10 TRADE

Flat 92.54 87.14 84.92

HAR 92.19 84.64 83.90

5.C Results on CIFAR-100 with ℓ2-norm Constrained Per-

turbations

Similar to the setup with ℓ∞-norm constrained perturbations discussed in Section 5.6, we compare

the HAR network with flat baseline models robustified against ℓ2 attacks. We were unable to achieve

reasonable robustness results with TRADES against ℓ2 attacks, likely because the hyperparameter

sweep was based on ℓ∞ results, and no additional sweep was performed for ℓ2 perturbations. Con-

sequently, the optimal value for β in TRADES is unsuitable in the ℓ2 setting. For this reason, we

omit TRADES from this section.

The results are summarized in Table 5.6. Overall, these findings are consistent with those

from the ℓ∞-norm attacks. The proposed hierarchical attack significantly degrades the hierarchical

robustness of all tested models, while the HAR model exhibits greater robustness compared to flat

models.

5.D Comparison of Clean Test Accuracy on CIFAR-10

Finally, we report the clean test accuracy of the flat baselines and the proposed HAR networks on

CIFAR-10. All models follow the training configurations in Section 5.6. We observe a slight decrease

in the clean accuracy with the proposed HAR network, following the accuracy-robustness trade-off

discussed earlier in Section 2.5.

Chapter 6

Improving Adversarial Transferability

via Model Alignment

6.1 Introduction

In the previous chapters, we demonstrated that seemingly indistinguishable perturbations to an

input can yield drastically different outputs from neural networks, highlighting the brittleness of

these models. In practice, adversaries often do not access to the target model’s architecture or

parameters. However, as discussed in Section 2.6, what makes adversarial examples particularly

concerning is their transferability across models—i.e., the ability of an example generated for one

model to fool another.

In this chapter, we propose a model alignment technique to improve the transferability of ad-

versarial examples. At first glance, one might question: Why not concentrate on building defensive

methods to reduce vulnerability? Developing methods to generate more effective adversarial examples

is just as important as devising strategies to improve the robustness of neural networks. As of now,

the top three robustification techniques (Wang et al., 2023; Bai et al., 2023; Peng et al., 2023) listed

on RobustBench (Croce et al., 2021) all rely on some variants of adversarial training: augmenting

the training data with adversarial examples (Goodfellow et al., 2015; Madry et al., 2018).

This highlights the importance of understanding and improving adversarial example generation.

Our work focuses on one particular aspect of this direction: generating adversarial examples that

exhibit higher transferability. Specifically, Our goal is to transform any source model into one from

which attacks generate more transferable perturbations.

One possible explanation for the transferability of adversarial examples is that these perturba-

tions exploit similar features present in both the source and target models (Ilyas et al., 2019). To see

this, let us first consider the hypothesis that neural networks capture two distinct types of features

from data: semantic features and human-imperceptible features. This hypothesis has been proposed

and empirically supported in Chapter 4 and studies such as Wang et al. (2020a) and Dong et al.

(2019a). We provide a summary of their findings as follows. First, models learn semantic features

that align with human perception. The extraction of such features is similar across different mod-

els, reflecting a shared understanding of the semantics. Second, models learn human-imperceptible

This chapter is based on our work in Improving Adversarial Transferability via Model Alignment.

107

https://arxiv.org/pdf/2311.18495

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 108

Res50 VGG19 DN121 IncV3 ViT-B/16
25

30

35

40

45

50

55

Av
er

ag
e

Tr
an

sf
er

ab
ilit

y
(%

) Aligned Source
PGD
MI-FGSM
NI-FGSM
TI-FGSM
DI-FGSM

Original Source
PGD
MI-FGSM
NI-FGSM
TI-FGSM
DI-FGSM

Figure 6.1: Attacking the aligned source model for more transferable perturbations.
We compare the transferability of ℓ∞-norm bounded perturbations (ϵ = 4/255) generated using the
source model before and after performing model alignment. The result highlights the compatibility
of model alignment with a wide range of attacks, as perturbations generated from the aligned source
model become more transferable. Here, the source model is aligned using a witness model from the
same architecture but is initialized and trained independently. Results are averaged over all target
models.

features, and their learning is model-specific. For example, Chapter 4 theoretically demonstrated

that the use of these features varies based on models’ initialization and their optimization process.

Wang et al. (2020a) discussed how model architecture can result in model-specific interpretations of

these features.

Features and vulnerabilities are highly correlated, as vulnerabilities often arise from the ex-

ploitation of specific features—patterns or attributes in the data that models rely on to make pre-

dictions (Ilyas et al., 2019). In the context of transferability, the degree of similarity between those

exploited features in the source and target model is crucial. That is, the more similar the exploited

features between models, the more likely it is that the perturbation will successfully transfer. To

support this, Liu et al. (2016) empirically showed that different models have similar decision bound-

aries (from learning similar features), thus enabling some perturbation to be transferable across

different models. However, some perturbations exploit features that are source-model-specific.Qin

et al. (2022) empirically demonstrated that when maximizing the cross entropy loss to find adversar-

ial examples, some perturbations fail to transfer because they correspond to sharp local maxima in

the input space, specific to the source model. These perturbations exploit features that are unique

to the source model and are not shared with the target model. Motivated by these observations,

we propose a model alignment technique to modify the source model to encourage a similar feature

extraction as other, independently trained models, which we refer to as witness models.

During the alignment process, the parameters of the source model are fine-tuned to minimize an

alignment loss. This alignment loss measures the divergence in the predictions between the source

and the witness model. Through this alignment process, the source model learns to focus on a set

of features that are similarly extracted by the witness model. This allows attack algorithms to more

effectively exploit features common across models, leading to more transferable perturbations.

Model alignment complements, rather than competes with, other attack algorithms. This syn-

ergy underscores our method’s key advantage: its broad compatibility with a wide range of attack

algorithms, as highlighted in Figure 6.1. Extensive experiments on various combinations of archi-

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 109

tectures, transferability on individual target models, and results with other attacks are included in

Section 6.5.

6.1.1 Contributions

Our contributions can be summarized as follows:

• We present a model alignment method to fine-tune the source model by minimizing an align-

ment loss which measures the difference in the output between the source model and the

witness model.

• We analyze the effect of the proposed alignment method, demonstrating that perturbations

generated from the source model exploit more semantic features that are shared across differ-

ent models.

• To understand the effect of model alignment, we conduct a geometric analysis to study the

changes in the loss landscape resulting from this process.

• Extensive experiments on ImageNet (Krizhevsky et al., 2012), using CNNs and Vision Trans-

formers (ViTs) (Dosovitskiy et al., 2021; Liu et al., 2021), demonstrate that perturbations

generated from aligned source models exhibit significantly higher transferability than those

from the original source model. We demonstrate that our alignment technique is compatible

with a wide range of attacks.

6.2 Background

In this section, we provide a brief overview of approaches to generate more transferable perturbations.

For a more comprehensive review of research related to adversarial transferability, we direct the

reader to a recent survey (Gu et al., 2023).

6.2.1 Generating Transferable Perturbations

Existing work on improving the transferability of adversarial examples can be categorized into four

groups: data-augmentation-based methods (Xie et al., 2019; Dong et al., 2019b; Zou et al., 2020;

Wu et al., 2021; Li et al., 2020b; Byun et al., 2022; Wang et al., 2021c), optimization-based meth-

ods (Dong et al., 2018; Lin et al., 2020; Wang et al., 2021b; Zhao et al., 2021; Zhang et al., 2022;

Xiao et al., 2021; Li et al., 2020a), model-modification-based methods (Benz et al., 2021b; Wu et al.,

2020a; Guo et al., 2020b; Wang et al., 2024), and ensemble-based methods (Liu et al., 2016; Gubri

et al., 2022; Qian et al., 2023; Li et al., 2022b).

Data augmentation-based methods: Data augmentation methods are ubiquitously used in

training DNNs to prevent overfitting. Advanced augmentation techniques (Zhang et al., 2018; Yun

et al., 2019; Cubuk et al., 2019; Ma et al., 2022a) have become crucial to achieving state-of-the-art

generalization performance on large-scale datasets like ImageNet. Building on this concept, several

works have proposed the incorporation of various forms of data augmentation into attack algorithms.

This integration aims to prevent adversarial examples from overfitting to the source model, thereby

improving transferability.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 110

Optimization-based methods: Lin et al. (2020) drew a parallel between generating transferable

adversarial examples and training neural networks. In this analogy, source models are the training

data, adversarial perturbations are model parameters, and the target model is the testing data.

Thus, transferability of adversarial examples is akin to model generalization. As such, optimization-

based approaches, such as momentum (Dong et al., 2018; Lin et al., 2020; Zou et al., 2020) and

variance tuning (Wang et al., 2021b; Xiong et al., 2022), that were initially proposed to improve the

generalization of neural networks can be leveraged to improve the transferability of the adversarial

examples.

Model modification-based methods: Several studies have proposed methods to improve the

transferability of adversarial examples by modifying the source model. For example, Benz et al.

(2021b) demonstrated that perturbations generated from a source model without batch normaliza-

tion (Ioffe et al., 2015) are more transferable than those from models equipped with batch normaliza-

tion. Methods like Linear Backpropagation (LinBP) (Guo et al., 2020b) and Backward Propagation

Attack (BPA) (Wang et al., 2024) focus on non-linear activations and modify the derivative of ReLU.

Wu et al. (2020a) showed that increasing gradients from skip connections over residual units can

significantly increase transferability.

Among the categories of methods discussed, model alignment is most closely related to model

modification-based approaches. However, a key advantage of our approach is its model-agnostic

nature: alignment can be applied without changing the model’s forward or backward pass, improving

any source model’s ability to generate more transferable perturbations. In contrast, other methods

require changes, such as those seen in LinBP and BPA, or even complete retraining.

Ensemble-based methods: Another line of approaches involves the use of multiple models for

generating adversarial examples. Liu et al. (2016) were among the first to propose enhancing trans-

ferability by attacking an ensemble of models, with the rationale being that a perturbation capable of

fooling multiple models is more likely to deceive the target model. More recently, Gubri et al. (2022)

proposed constructing an ensemble of source models by collecting weights along the fine-tuning

trajectory of a trained model.

In Section 6.5, we demonstrate that model alignment is fully compatible with all these methods.

6.2.2 Understanding Adversarial Transferability

Several works have focused on understanding the transferability of adversarial perturbations (Zhang

et al., 2024; Wu et al., 2020b; Waseda et al., 2023; Zhu et al., 2021), with some analyzing from a

geometric perspective (Fawzi et al., 2017; Charles et al., 2019; Zhao et al., 2020; Liu et al., 2016).

Liu et al. (2016) empirically demonstrated that adversarial examples with weak transferability often

correspond to local maxima in the source model’s loss landscape with respect to the input space.

They analyzed the position of adversarial examples relative to the decision boundaries of both the

source and target models. They found that some perturbations fail to transfer because they are

located in tiny pockets within regions corresponding to the ground truth label, which exist only

for the source model but not for the target model. Similarly, Gubri et al. (2022) hypothesized

that adversarial examples at flat loss maxima of the source model tend to transfer more effectively

than those at sharp maxima. Motivated by these insights, in Section 6.4, we extend this geometric

perspective by examining how the alignment method influences the loss surface geometry of the

source model, particularly in its capacity to generate more transferable adversarial examples.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 111

6.3 Formulation of Model Alignment

We introduce the model alignment as a fine-tuning process and explain why aligned models are

better at generating transferable perturbations. In this work, we focus on neural networks used for

classification tasks. Let us consider a neural network designed for m-class classification, represented

as a series of function compositions:

f(x) = (ϕ[l] ◦ ϕ[l−1] ◦ . . . ◦ ϕ[1])(x),

where each ϕ[i] represents an operation within the network, which could be a linear transformation

(such as a fully connected layer), an activation function, or a pooling operation. The parameters

of the neural network are collectively denoted as θ. The intermediate outputs of these operations

are often referred to as hidden representations. We denote them by z[i], where z[i] = ϕ[i](z[i−1]) for

i = 1, 2, . . . , l, and the initial input is z[0] = x. Additionally, we incorporate the softmax function

into the neural network’s definition. Specifically, in the final layer, we have ϕ[l] = softmax(z[l−1]),

where z[l−1] are called the logits. With this definition, the output of this network, f(x), can be

interpreted as a probability distribution over the m classes where each component f(x)i represents

the probability of the input x belonging to class i.

The goal of model alignment is to modify the source model such that it can extract features

similar to those of a witness model. In this chapter, we define a witness model as an independently

initialized and trained model that differs from the source model in at least one factor, such as

architecture, initialization, or training procedure. We denote the parameters of the source model

and the witness model as θs and θw, respectively. Let us consider the following pointwise formulation

of the alignment loss:

ℓa(x, θs, θw) = d(z[q]s (x), z[q]w (x)), (6.1)

where the metric d measures the output difference at layer q between the models.

During alignment, the parameters of the source model are fine-tuned to minimize this alignment

loss which captures the differences between models’ output. Specifically, when q = l, the alignment

loss measures the divergence between the probability distributions generated by the two models. In

this scenario, the Kullback-Leibler (KL) divergence is particularly suitable, due to its effectiveness in

measuring distribution differences and its relative ease of implementation in practice. Our analysis

and primary experimental results are based on this setting, where model alignment occurs in the

output space. We also explore the alignment in the embedding space (i.e., q < l), which is detailed

in our ablation study. The pointwise loss defined in (6.1) focuses on aligning the source model with a

single witness model. However, alignment can also be extended to multiple witness models to further

improve the alignment process. This process involves using a set of witness models, denoted as Θ,

with the number of witness models represented by |Θ|. Finally, the update rule for the parameters

of the source model based on SGD can be written as

θs(t + 1) = θs(t)− η
1

|B| |Θ|
∑
x∈B

∑
θw∈Θ

∇ℓa(x, θs(t), θw),

where B represents the mini-batch.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 112

Table 6.1: Evaluation of the change in the similarity between the source and witness
model after model alignment. We focus on aligning a Res50 with a Res18 and a ViT-B/16
with a ViT-T/16. We first evaluate the similarity between each original source model and its
corresponding witness model. This is then followed by an evaluation between the aligned model and
the witness model. To measure the similarity, we use the KL divergence, prediction agreement, and
the cosine similarity between the input gradients.

Source/Witness
KL Prediction Agreement Input Gradient Cosine Similarity

Before After Before After Before After

Res50 / Res18 0.63 0.31 80.7% 82.4% 0.043 0.096

ViT-B / ViT-T 0.75 0.24 78.9% 85.0% 0.026 0.063

6.4 Understanding Model Alignment

We now provide an understanding of the model alignment approach. To investigate the effect of

alignment, we first evaluate the change in the similarity between the source and witness models.

We then analyze the perturbations generated from the source model before and after alignment.

Finally, we conduct a geometric analysis to study the changes in the loss surface resulting from the

alignment process.

We summarize the key implementation details here and refer readers to Section 6.5.1 for addi-

tional information. ResNet50 and ViT-B/16 are used as source models, aligned with ResNet18 and

ViT-T/16, respectively, as their witness models. Using the ImageNet training set, the alignment

is performed for one epoch on the output layer (i.e., q = l in (6.1)), using KL divergence as the

distance metric d. All results presented in this section are averaged over 1000 randomly sampled

images from the ImageNet test set. We consider ℓ∞-norm adversarial examples generated using 20

iterations of PGD with ϵ = 4/255 and α = 1/255 (refer to (2.5) in Section 2.3). We use ∆xs and

∆xa to represent the perturbations generated based on the source and aligned models, respectively.

6.4.1 Evaluating Similarity between the Source and Witness Model

To study the similarity between the source and witness models before and after alignment, we

examine KL divergence and cosine similarity of input gradients, with the latter being particularly

important for its role in the attack processes. Additionally, we measure prediction agreement between

the two models:

Prediction Agreement =
1

N

N∑
i=1

I (arg max fs(xi) = arg max fw(xi)) ,

where N is the number of samples, fs(x) and fw(x) are the outputs of the source and witness models,

respectively, and I(·) is the indicator function. This metric represents the percentage of samples for

which the two models agree on the predicted class.

We first evaluate the similarity between each original source model and its corresponding witness

model. This is then followed by an evaluation between the aligned model and the witness model.

Table 6.1 presents the results, indicating reductions in KL divergence, increased cosine similarity,

and improved prediction agreement post-alignment.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 113

0 50 100 150 200

0

25

50

75

100

125

150

175

200
-0.01

0.00

0.01

0.02

0.03

0.04

a. ResNet50.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

-0.02

0.00

0.02

0.04

0.06

b. ViT-B/16.

Figure 6.2: Frequency-domain visualization of the differences in the perturbation gen-
erated using the original and aligned model. We compare the magnitude of the DCT coef-
ficients between the perturbations generated by the two models: |DCT(∆xa)| − |DCT(∆xs)|. The
pronounced brightness in the top-left region of the spectrum indicates that the primary differences
lie within the low-frequency range, which is typically associated with semantic features.

6.4.2 Aligned Model Exploits More Semantic Features

To verify that attacks applied to the aligned model exploit more semantic features, we compare the

perturbations generated using the original and aligned source models.

Adversarial perturbations are imperceptible and difficult to characterize in terms of the specific

features they exploit in the spatial domain. However, by analyzing perturbations in the frequency

domain, we can observe the types of features each model exploits. Semantic features mostly con-

centrate around the low-frequency end of the spectrum, as demonstrated in Chapter 4 and stud-

ies such as Wang et al. (2020a) and Dong et al. (2019a). We consider discrete cosine transform

(DCT) (Ahmed et al., 1974) and compare the DCT coefficients of the perturbations generated

from the source and the aligned model, denoted as DCT(∆xs) and DCT(∆xa), respectively. Since

our interest lies in the magnitude of these coefficients, we visualize the difference by computing

|DCT(∆xa)| − |DCT(∆xs)|.
The results are illustrated in Figure 6.2. We observe that the differences between the perturba-

tions are predominantly located in the top-left corner of the DCT spectrum, indicating that they

primarily differ in the amount of low-frequency information. This result shows that adversarial per-

turbations generated from the aligned source model exploit more low-frequency, semantic features

compared to those generated from the original source model.

6.4.3 Model Alignment Yields Smoother Loss Surface

Previous works have studied the connection between perturbation from sharp loss maxima in the

input space and their poor transferability (Qin et al., 2022; Gubri et al., 2022). We extend this

geometric perspective by examining how model alignment affects the loss surface geometry of the

source model, particularly in its capacity to generate more transferable adversarial examples.

Let us first focus on the setting where (6.1) measures the KL divergence between the predictions

from the two models. During the alignment process, the parameters of the source model are fine-

tuned using soft labels based on the witness model’s outputs. Unlike one-hot labels, which assign a

probability of 1 to the target class and 0 to all others, soft labels represent a probability distribution

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 114

4 2 0 2 4
u

4

2

0

2

4

v

(fs(x + u xs + v xs), y)

4 2 0 2 4
u

4

2

0

2

4

v

(fa(x + u xa + v xa), y)

4 2 0 2 4
u

4

2

0

2

4

v

(ft(x + u xs + v xs), y)

4 2 0 2 4
u

4

2

0

2

4

v

(ft(x + u xa + v xa), y)

20

40

60

80

a. ResNet50.

4 2 0 2 4
u

4

2

0

2

4

v

(fs(x + u xs + v xs), y)

4 2 0 2 4
u

4

2

0

2

4

v

(fa(x + u xa + v xa), y)

4 2 0 2 4
u

4

2

0

2

4

v

(ft(x + u xs + v xs), y)

4 2 0 2 4
u

4

2

0

2

4

v

(ft(x + u xa + v xa), y)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

b. ViT-B/16.

Figure 6.3: Visualization of the loss surface around adversarial perturbations generated
from the original and aligned model. Each plot illustrates the loss surface projected on the
plane spanned by the direction of the adversarial perturbation and its orthogonal vector. We examine
the loss landscape surrounding a clean data point (cyan marker) and an ℓ∞-bounded adversarially
perturbed data point (red marker), generated from the source model (∆xs) and the aligned model
(∆xa). Notice that perturbations generated using the original source models are located at sharper
loss maxima, whereas the loss surface around the perturbation generated using the aligned model is
much flatter.

across all classes.

Training DNNs with soft labels prevents the model from becoming overly confident in its predic-

tions, thereby improving generalization (Szegedy et al., 2016; He et al., 2019; Hinton et al., 2015;

Müller et al., 2019). Compared to using hard, one-hot encoded labels, it has been shown that train-

ing with soft labels implicitly regularizes the norm of the input Jacobian (Carratino et al., 2022;

Zhang et al., 2021), and leads to smoother decision boundaries (Zhang et al., 2018; Verma et al.,

2019).

To understand why model alignment can be helpful, we begin by identifying a data point for

which the perturbation, when generated based on the original source model, fails to transfer to the

target model, but the perturbation generated using the aligned model misleads the target model.

In Figure 6.3, we visualize the loss surface surrounding this data point, spanned by two pairs of

orthogonal vectors: ∆xs, ∆x⊥
s , ∆xa and ∆x⊥

a . Here, ∆x⊥
s and ∆x⊥

a are randomly selected orthog-

onal vectors and are also bounded by the same ϵ. In each plot, the center of the plot (cyan marker)

represents the clean data point, and the adversarial example is highlighted using the red marker.

We make two observations. First, the bright yellow region around the perturbations generated

from the original source model suggests that they are located at sharp loss maxima. However,

these same perturbations do not effectively cause a significant increase in loss when applied to the

target model. This observation aligns with previous findings indicating that perturbations with poor

transferability often correspond to sharp local maxima unique to the source model, which are not

present in the target model (Gubri et al., 2022; Qin et al., 2022). Second, the loss surface around

perturbations generated from the aligned model is noticeably flatter. This is in line with prior

findings that adversarial perturbations from flatter maxima tend to be transferable (Gubri et al.,

2022; Qin et al., 2022). It is noteworthy that the PGD attack does not explicitly target flat maxima

for generating adversarial examples. This observation leads us to hypothesize that the smoothing

effect induced by the alignment process is more global, rather than being confined to specific cases

of adversarial examples.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 115

Table 6.2: Evaluation of the ℓ2-norm of the gradient (∥∇xℓ(x + ∆x, y, θ)∥2) and the largest
eigenvalue of the Hessian (λmax(∇2

xℓ(x+ ∆x, y, θ))) on the original (θs) and aligned model
(θa). Results are averaged over 1000 randomly selected ImageNet test samples. In addition to the
original test data (∆x = 0), we consider two types of perturbations: ∆x ∈ {Gaussian,PGD}. Notice
that both the gradient norm and the largest eigenvalue decrease significantly when evaluated on all
three types of input, suggesting that the smoothing effect induced by the alignment is more global,
rather than being confined to specific cases of adversarial examples.

Source / Witness Res50 / Res18 ViT-B/16 / ViT-T/16

Metric ∥∇xℓ(x+∆x, y, θ)∥2 λmax(∇2
xℓ(x+∆x, y, θ)) ∥∇xℓ(x+∆x, y, θ)∥2

∆x θs θa θs θa θs θa

0 0.056 0.032 4.16 1.25 0.060 0.029

Gaussian 0.057 0.032 4.34 1.27 0.063 0.029

PGD 0.453 0.171 0.10 0.05 0.184 0.055

To verify this, we evaluate the change in 1. the ℓ2-norm of the gradients and 2. the maxi-

mum eigenvalue of the Hessian w.r.t. clean, Gaussian-perturbed (σ2 = 0.01), and PGD-perturbed

inputs. More formally, we compare ∥∇xℓ(x + ∆x, y, θ)∥2 and λmax(∇2
xℓ(x + ∆x, y, θ) for ∆x ∈

{0,Gaussian,PGD} for θ ∈ {θs, θa} over 1000 randomly sampled ImageNet test samples. As Py-

Torch currently does not support computing second-order derivatives for ViT models, we only include

results for Res50 for the Hessian and consider both Res50 and ViT-B/16 for the gradient norm.

The results are summarized in Table 6.2. We observe a significant decrease in both the gradient

norm and the largest eigenvalue across all inputs, and the reduction is particularly pronounced at

PGD-perturbed data points. This decrease is consistent with the previous finding which demon-

strated a connection between the use of soft labels and the smoothing of the loss surface (Carratino

et al., 2022; Zhang et al., 2021). More importantly, this observation supports our hypothesis that

the improved transferability of adversarial examples generated from the aligned model is due to the

smoothing of the loss surface.

6.5 Experiments

In this section, we present a series of experiment results to demonstrate the improved ability of a

given source model to generate transferable adversarial perturbations. We study factors that can

further improve the alignment process and demonstrate the compatibility of our approach with a

wide range of attacks.

6.5.1 Experiment Setup

Model: We consider a variety of neural network architectures as the source, witness, and tar-

get models. For CNN-based models, we include ResNet18 (Res18), ResNet50 (Res50), ResNet101

(Res101) (He et al., 2016b), VGG19 (Simonyan et al., 2015), DenseNet121 (DN121) (Huang et al.,

2017), and Inception-v3 (IncV3) (Szegedy et al., 2016). For ViT-based architectures, our selec-

tion includes ViT-T/16, ViT-S/16, ViT-B/16 (Dosovitskiy et al., 2021), and Swin Transformers

(SWIN) (Liu et al., 2021). We follow the optimization schedule described in the official Pytorch

repository to train all models. Training and model details are included in Appendix 6.A.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 116

Fine-tune: During alignment, all source models are fine-tuned for one epoch using SGD with a

momentum of 0.9, sweeping over 3 learning rates. No additional data is used during the process, as

fine-tuning relies exclusively on the same training data used to train the source and witness models.

We use a fixed batch size of 128 for CNN-based models and 512 for ViT-based models. We use a

cosine decay learning rate schedule with a linear warmup. For ViT-based models, we follow (Steiner

et al., 2021) and gradients are clipped at a global norm of 1.

These configurations apply to all experiments presented in this chapter. For the main results

in Table 6.3, alignment is performed using a single witness model, focusing on the output layer

(i.e., q = l in (6.1)) and using KL divergence as the distance d. In the ablation study, we explore

multi-witness alignment as well as alignment in the embedding space (i.e., q < l), using different

embedding-space distillation methods.

Dataset: We follow previous work (Dong et al., 2018; Lin et al., 2020) in which evaluations are

based on 1000 images from the ImageNet test set. For a given source and target model, these

samples meet the following criteria: they are correctly classified by both models, and the adversarial

examples, when generated from each model, lead to misclassifications in their respective originating

models. The samples are initially selected uniformly and independently from the test set, and only

those meeting the criteria are included.

Attack method: We focus on non-targeted adversarial perturbations constrained by the ℓ∞-norm.

Unless otherwise stated, all perturbations are generated using 20 iterations of PGD with ϵ = 4/255

and α = 1/255 (refer to (2.5) in Section 2.3). All target models have an error rate of 100% under

white-box PGD attacks. Results with different attack methods and larger values of ϵ are included

in the ablation study.

Metric: We measure transferability using the error rate, with a higher rate indicating greater

transferability. In the tables of this section, we first present a row labeled ‘n/a’ to denote the error

rate for perturbations generated by the original source model. We then demonstrate the change in

transferability after alignment following the +/− sign. A larger change indicates a greater increase

in transferability resulting from using the aligned model. All results presented in this section are

obtained from the average of three independent runs.

6.5.2 Model Alignment Improves Transferability

To demonstrate the improved transferability of perturbations generated using the aligned source

model, we evaluate across a diverse set of neural network architectures for both source and witness

models, focusing on the transferability to an extensive array of target models. Table 6.3 shows the

original error rates and their changes after using the aligned model. We make two key observations.

First, the model alignment approach can transform any given source model into one from which

the PGD attack generates more transferable perturbations. Such an improvement can be observed

across various combinations of source and witness models and is evident in all evaluated target

models. This clear improvement validates our approach, showing that aligning the source model

can lead to the generation of more transferable adversarial perturbations. Notably, both CNN and

ViT-based source models can benefit from the alignment process. Recent studies have shown that

the transferability between ViTs and CNNs is poor, and many attack algorithms do not generalize

well to ViTs (Naseer et al., 2021; Wei et al., 2022; Mahmood et al., 2021). Our model alignment

method offers a promising solution to bridge this gap.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 117

Table 6.3: Aligning the source model can lead to the generation of more transferable
adversarial examples (%).The result demonstrates the increase in error rates when adversarial
examples generated from aligned source models are applied to different target models. Our method
improves the transferability of adversarial examples generated from a wide range of architectures,
including both CNNs and ViTs.

Source Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res50

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

Res50 +9.60 +9.90 +8.12 +6.59 +8.98 +4.79 +0.67 +0.65 +0.42 +2.65

VGG19 +8.30 +7.88 +7.41 +9.17 +9.93 +6.76 +0.75 +0.52 +0.17 +1.97

DN121 +9.39 +10.82 +8.40 +8.41 +12.41 +7.21 +1.87 +2.02 +0.38 +2.61

IncV3 +7.69 +7.52 +5.99 +5.56 +9.19 +8.23 +2.29 +0.30 +0.24 +3.01

ViT-B/16 −9.41 −19.39 −17.48 −10.04 −12.76 −8.49 −3.25 −2.69 −1.14 −4.17

SWIN −9.23 −16.21 −14.30 −7.27 −10.02 −5.53 −2.72 −2.93 −2.36 −2.73

VGG19

n/a 33.49 30.10 26.13 79.43 32.07 30.62 23.27 19.85 18.66 23.09

Res50 +7.19 +4.16 +2.76 +5.19 +7.62 +5.91 +3.45 +1.20 +1.36 +1.12

VGG19 +4.66 +2.10 +1.77 +7.30 +3.44 +1.74 +2.64 +0.68 +1.39 +0.90

DN121 +6.35 +3.52 +5.07 +10.60 +10.45 +5.03 +4.09 +2.36 +2.58 +1.31

IncV3 +4.91 +1.57 +1.66 +3.82 +4.94 +4.33 +2.70 +0.61 +0.61 +1.04

ViT-B/16 −4.34 −5.68 −5.01 −24.66 −5.11 −3.67 −0.83 −0.37 +0.77 −2.53

SWIN −3.24 −5.83 −4.01 −21.91 −6.48 −4.05 −1.11 −0.73 +0.64 −2.96

DN121

n/a 40.20 44.01 37.15 40.84 61.15 32.28 23.68 20.34 18.21 23.56

Res50 +11.67 +12.96 +8.37 +7.32 +11.68 +5.41 +1.69 +0.46 +1.00 +1.59

VGG19 +9.02 +6.38 +4.88 +12.34 +7.87 +3.77 +2.72 +0.04 +1.22 +0.94

DN121 +12.56 +11.60 +10.48 +9.10 +15.47 +6.84 +3.99 +1.59 +1.24 +1.86

IncV3 +8.08 +10.50 +9.88 +9.91 +12.76 +7.24 +3.81 +1.23 −0.02 +2.79

ViT-B/16 −3.08 −8.43 −7.78 −6.67 −12.96 −1.78 +2.06 +1.26 +1.22 −2.78

SWIN −4.13 −8.57 −5.34 −6.11 −10.21 −4.64 +0.54 −0.16 +1.21 −1.88

IncV3

n/a 30.68 27.49 25.02 33.47 30.98 51.80 22.99 18.77 17.72 20.94

Res50 +4.92 +6.59 +4.27 +5.49 +5.74 +4.49 +1.71 +2.26 +2.74 +2.23

VGG19 +4.65 +2.69 +3.10 +5.70 +3.39 +4.36 +1.05 −0.54 +0.38 +0.53

DN121 +4.50 +6.38 +2.13 +7.35 +6.52 +8.89 +3.54 +0.68 +1.41 +1.45

IncV3 +1.78 +3.91 +3.70 +3.53 +3.06 +8.75 +1.79 +0.49 +1.41 +1.75

ViT-B/16 +0.47 −1.13 −2.97 −0.77 −1.35 −8.20 +2.92 +1.64 +2.07 −0.23

SWIN −0.49 −3.36 −3.85 −3.29 −4.54 −12.82 +0.09 +0.76 +1.13 −1.34

ViT-B/16

n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

Res50 +17.53 +12.89 +12.23 +14.83 +16.66 +15.76 +43.47 +37.17 +29.16 +21.16

VGG19 +10.89 +9.49 +9.77 +14.23 +12.65 +10.94 +39.63 +31.65 +21.30 +14.97

DN121 +17.15 +13.92 +12.28 +15.38 +17.68 +16.96 +47.36 +41.88 +31.22 +21.87

IncV3 +15.41 +11.87 +11.31 +15.09 +14.23 +16.46 +46.07 +40.39 +28.87 +19.92

ViT-B/16 +5.14 +2.04 +2.07 +4.79 +2.87 +4.53 +24.04 +23.14 +21.93 +6.34

SWIN +6.31 +5.75 +5.92 +8.12 +7.46 +7.28 +39.11 +36.49 +28.61 +14.62

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 118

Second, we find that CNN-based source models generally benefit from aligning with other CNN-

based models, rather than with ViT-based models. On the other hand, the ViT-B/16 source model

can benefit from aligning with witness models from both CNN and ViT families. We provide a

possible explanation for this phenomenon. Previous studies have shown that ViTs and CNNs learn

distinctively different features (Zhou et al., 2022; Raghu et al., 2021). Specifically, Raghu et al.

(2021) focused on early-layer representations learned by the two models and showed that more

ResNet layers are required to be modified to match hidden representations of a ViT, compared to

the other way around. In the context of model alignment, this suggests an asymmetric behavior in

the alignment process; namely, it might be easier to align ViTs with CNNs than to align CNNs with

ViTs.

Choosing the witness model: The main goal of Table 6.3 is to demonstrate that the improved

transferability is not limited to particular choices of witness models. The result also highlights

the effectiveness of a straightforward, model-selection-free self-alignment strategy. This is evident

from the consistent improvement observed when the source and witness models share the same

architecture, but are initialized and trained independently. The selection of witness models is further

explored in our ablation studies.

Regularization to prevent overfitting: A prolonged alignment process may inadvertently

cause overfitting to the witness model, thereby diminishing the gains in transferability. To counteract

overfitting, regularization methods can be implemented. For example, we apply early stopping and

limit the alignment to a single epoch. Moreover, an ensemble of witnesses can be used to avert

overfitting to any singular witness model. Results with multiple witness models are discussed in

Section 6.5.3. Furthermore, when aligning by minimizing KL divergence, adjusting the temperature

scaling within the softmax function can be an effective measure to prevent the exact replication of

the witness model’s predictions by the source model.

6.5.3 Ablation Studies

We conduct several ablation studies to investigate factors that could further improve the alignment

process. Additionally, we demonstrate that our approach is compatible with a wide range of attack

algorithms.

Smaller Witness Model Might Boost Learning Shared Features.

Results in Table 6.3 indicate that DN121, which has the fewest parameters, frequently emerges as a

more effective witness model. This motivates us to investigate the role of the capacity of the witness

model during the alignment. While several factors contribute to a model’s capacity, such as its

structure, the normalization techniques, and its non-linear activations, our study primarily focuses

on the number of parameters as a proxy for capacity. With this in mind, we consider three models

each from the ResNet and ViT families.

Table 6.4 summarizes the results of the model capacity analysis, pointing to one key observation.

Model alignment is more effective when the witness models have a smaller model capacity. For

instance, when using Res101 as the source model, alignment with the lower capacity Res18 as the

witness model is more beneficial than alignment with Res50. This matches the previous findings in

Table 6.3.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 119

Table 6.4: Analysis on the impact of witness model capacity on the alignment process
(%). We observe a greater improvement in the transferability of adversarial perturbations when the
source model is aligned with witness models of smaller capacity.

Source Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res18

n/a 64.10 45.85 37.09 42.96 48.57 37.31 27.52 21.12 20.57 21.31

Res50 −1.94 +0.41 −0.74 +0.82 −1.24 −1.78 +0.26 +1.33 +0.42 +1.48

Res101 −5.13 −3.92 −2.70 −1.75 −1.39 −0.22 +0.53 +0.25 +0.03 +0.48

Res50

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

Res18 +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

Res101 +4.27 +3.02 +3.93 +3.61 +4.41 +3.60 +1.86 −0.54 +0.14 +1.36

Res101

n/a 38.84 54.63 62.95 39.24 49.93 34.77 23.01 20.12 19.07 22.90

Res18 +40.64 +35.11 +27.78 +29.63 +33.20 +28.42 +10.10 +5.70 +2.37 +13.99

Res50 +14.97 +19.56 +16.97 +13.50 +17.07 +10.41 +4.04 +0.98 +1.44 +4.81

ViT-T/16

n/a 28.77 23.45 21.05 25.41 25.45 25.22 63.89 40.47 29.62 22.97

ViT-S/16 +0.30 +0.70 +1.02 +2.76 +0.54 +0.69 +7.01 +3.77 +2.92 +0.42

ViT-B/16 +0.86 −0.18 −1.11 +1.15 +0.47 +0.81 +5.09 +4.32 +3.55 −1.57

ViT-S/16

n/a 24.27 20.48 18.86 21.85 21.90 22.96 47.34 52.09 43.85 23.87

ViT-T/16 +9.64 +6.65 +6.29 +8.51 +10.66 +7.58 +40.53 +32.27 +26.10 +12.35

ViT-B/16 +3.10 +1.21 +2.87 +3.75 +3.19 +3.36 +19.07 +17.44 +13.81 +4.73

ViT-B/16

n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

ViT-T/16 +10.13 +9.71 +8.42 +10.71 +11.30 +9.89 +51.72 +44.99 +34.69 +20.01

ViT-S/16 +7.30 +4.57 +4.53 +4.75 +6.21 +6.34 +36.47 +35.66 +29.43 +12.00

We provide one interpretation of this observation. Smaller models might tend to focus more

on learning semantic features for generalization, as they lack the capacity of larger models to learn

imperceptible features. Therefore, when a source model is aligned with a smaller model, it is steered

towards learning more semantic features that are commonly shared across different models, thereby

leading to more transferable perturbations.

More Witness Models, Higher Transferability

Evaluations in Table 6.3 focus on alignment using a single witness model. However, aligning the

source model with multiple witness models can encourage learning features extracted by a group

of witness models, potentially increasing transferability even further. This approach also serves as

an effective strategy to prevent overfitting to a single witness model. Table 6.5 demonstrates the

results of using an increasing number of Res18 models to align with Res50. While we do observe

that a greater number of witness models tends to result in more transferable perturbations, the im-

provement is modest. This result suggests that simply quadrupling the number of witness models,

without considering their diversity, does not lead to a proportional improvement in transferabil-

ity. Developing a strategy for selecting optimal number and type of witness models represents an

interesting direction for future research.

Alignment in the Embedding Space Can Further Improve Transferability.

Recent advances in knowledge distillation highlight the potential benefits of aligning intermediate

representations over aligning outputs (Ma et al., 2022c; Chen et al., 2021; Park et al., 2019). Mo-

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 120

Table 6.5: Aligning the Res50 source model with multiple Res18 as witness models (%).
Using an increasing number of Res18 witness models during the alignment process results in a
modest improvement in transferability for adversarial examples generated from the aligned Res50.
This result suggests that simply quadrupling the number of witness models, without considering
their diversity, does not lead to a proportional improvement in transferability.

Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

1 +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

2 +35.01 +27.83 +24.82 +24.50 +27.88 +19.31 +8.28 +3.82 +1.19 +10.67

3 +34.69 +27.69 +27.39 +24.37 +29.44 +21.51 +8.19 +4.49 +3.27 +11.74

4 +35.57 +27.63 +27.94 +25.12 +28.61 +21.81 +8.29 +5.00 +3.78 +12.15

Table 6.6: Improving transferability via embedding space alignment (%). We focus on
Res50 and ViT-B/16 as source models, and they are aligned using a Res18 and a ViT-T/16 as the
witness model, respectively. Both models demonstrate improved adversarial transferability when
alignment is performed directly in the embedding space.

Source Method
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res50

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

KL +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

RKD +2.95 +2.12 +2.80 +2.78 +3.35 +4.09 −1.26 −0.53 −0.36 +0.21

EGA +35.35 +23.56 +27.09 +24.69 +28.94 +22.00 +10.12 +4.62 +3.80 +10.37

HINT +5.95 +6.55 +5.27 +5.43 +9.54 +4.34 +2.55 −0.01 +1.24 +2.58

NCE +21.51 +19.25 +20.39 +16.06 +19.70 +13.29 +6.78 +3.38 +1.06 +6.73

ViT-B/16

n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

KL +10.13 +9.71 +8.42 +10.71 +11.30 +9.89 +51.72 +44.99 +34.69 +20.01

RKD +13.40 +8.47 +8.79 +11.54 +10.25 +11.37 +46.07 +43.41 +34.02 +17.51

EGA +12.55 +10.21 +9.21 +11.39 +9.30 +12.05 +53.08 +44.65 +33.50 +21.40

HINT +12.78 +10.02 +9.84 +12.21 +12.07 +12.31 +53.41 +47.05 +38.50 +25.51

NCE +8.90 +8.48 +7.16 +9.00 +7.26 +7.92 +45.09 +41.84 +32.57 +15.47

tivated by these findings, our study investigates model alignment on the hidden representations of

the source model and the witness model. We focus on Res50 and ViT-B/16 as source models, and

they are aligned using a Res18 and a ViT-T/16 as the witness model, respectively. We set q in (6.1)

to the layer just before the fully-connected layer. We evaluate four embedding-space distillation

methods: Relational Knowledge Distillation (RKD) (Park et al., 2019), Embedding Graph Align-

ment (EGA) (Ma et al., 2022c), Intermediate-level Hints (HINT) (Romero et al., 2014) and Noise

Contrastive Estimation (NCE) (Chen et al., 2021). Those methods correspond to different choices

of distance metric d in (6.1).

The results are summarized in Table 6.6, with the second row representing output-space align-

ment using KL divergence for comparison. We observe that both models can benefit from the

embedding-space alignment methods. These promising results pave the way for further exploration

of embedding-space model alignment in the context of improving adversarial transferability.

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 121

Table 6.7: Compatibility of model alignment with different attack algorithms (%). The
Res50 and ViT-B/16 source models are aligned with a Res18 and ViT-T/16 witness model, respec-
tively. Each entry begins with the error rate for perturbations generated by the original source
model. Then, this is followed by the change in the error rate after model alignment. The results
demonstrate that the model alignment process enhances the effectiveness of all attack algorithms.

Source Attack
Target

Res18 VGG19 DN121 IncV3 ViT-B/16 SWIN

Res50

MI 75.54 + 20.23 71.46 + 19.97 79.60 + 16.31 59.08 + 22.22 25.19 + 7.87 37.04 + 16.02

NI 59.71 + 21.99 56.30 + 19.14 59.56 + 19.90 46.45 + 15.59 26.66 + 3.62 28.62 + 8.41

VMI 85.26 + 12.70 83.16 + 13.13 88.09 + 9.72 71.98 + 16.68 29.62 + 8.32 49.13 + 15.45

VNI 86.92 + 11.18 85.64 + 11.36 90.47 + 8.21 73.60 + 16.40 29.15 + 8.58 46.64 + 16.75

SINI 67.43 + 17.05 61.73 + 11.87 65.82 + 13.34 53.74 + 11.96 26.07 + 3.03 30.59 + 5.29

TI 71.31 + 21.67 64.87 + 20.13 73.95 + 16.85 53.13 + 19.18 25.58 + 7.59 30.00 + 11.71

DI 87.95 + 11.03 82.12 + 15.88 90.02 + 9.40 77.78 + 15.45 27.48 + 8.69 43.20 + 21.83

ViT-B/16

MI 33.73 + 15.60 35.24 + 12.06 32.29 + 13.51 33.97 + 11.85 71.48 + 24.13 33.57 + 20.87

NI 35.10 + 6.93 35.58 + 4.58 31.93 + 7.44 33.67 + 5.70 53.55 + 17.73 30.69 + 8.60

VMI 35.59 + 18.65 37.82 + 14.72 34.55 + 16.12 34.42 + 15.15 77.20 + 19.14 37.63 + 21.75

VNI 33.99 + 22.45 37.19 + 17.16 32.59 + 19.92 33.19 + 20.83 80.07 + 17.44 38.19 + 21.89

SINI 36.68 + 11.40 36.56 + 7.49 33.12 + 9.63 35.87 + 9.70 62.07 + 9.97 33.02 + 10.26

TI 36.85 + 29.96 32.74 + 24.05 35.48 + 25.98 32.99 + 21.31 67.16 + 27.23 32.50 + 25.52

DI 41.75 + 30.79 39.03 + 30.42 41.40 + 26.69 38.62 + 30.51 84.10 + 13.70 42.09 + 29.79

Model Alignment is Compatible with Other Transfer-enhancing Methods.

To demonstrate that model alignment is compatible with a wide range of attack algorithms, we

extend our analysis to include additional transfer-enhancing attacks. This includes optimization-

based methods such as MI-FGSM (Dong et al., 2018), NI-FGSM/SINI-FGSM (Lin et al., 2020) and

VMI-FGSM/VNI-FGSM (Wang et al., 2021b). We also include data-augmentation-based methods

such as TI-FGSM Dong et al., 2019b and DI-FGSM (Xie et al., 2019). Moreover, we consider a

larger ℓ∞-norm constraint of ϵ = 8/255 with a step size of α = 2/255, and double the number of

iterations to 40.

The results are summarized in Table 6.7. Each entry begins with the error rate for perturbations

generated by the original source model. Then, this is followed by the change in the error rate after

model alignment. We observe that all considered attack algorithms can leverage the aligned source

model to improve transferability. In addition to the attacks included in the table, we also consider

LinBP (Guo et al., 2020b), a model-modification-based attack, which does not require the training

of additional models. The implementation of LinBP is readily available for Res50. When using

a standard Res50 as the target model, MI-FGSM-LinBP-generated perturbations from the aligned

Res50 show a 3.59% increase in transferability compared to those from the original, unaligned Res50.

Model modification-based attacks: In addition to the attacks included in the table, we show

that model alignment can be integrated with LinBP (Guo et al., 2020b) and BPA (Wang et al.,

2024), two model-modification-based methods. We compare the transferabilty of MI-FGSM-LinBP

and PGD-BPA perturbations from the aligned Res50 to those from the original, unaligned Res50. In

Table 6.8, we observe increased transferability across all target models, with an average increase of

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 122

Table 6.8: Compatibility of model alignment with model modification-based transfer-
enhancing attack algorithms (%). We focus on Res50 source models, which is aligned with a
Res18 as the witness model. The aligned models are denoted as Res50∗. Model alignment can be
integrated with model modification-based methods.

Attack Source
Target

Res18 Res50 VGG19 DN121 IncV3 ViT-T SWIN

MI-FGSM-LinBP
Res50 87.89 93.55 84.08 88.57 71.19 43.16 46.19

Res50* 97.27 96.27 93.07 95.61 86.04 56.25 57.71

PGD-BPA
Res50 51.06 63.98 51.54 58.24 34.02 12.0 11.04

Res50* 76.76 81.98 70.62 77.98 53.18 19.3 20.06

Table 6.9: Improved transferability from using aligned models in an ensemble (%). Per-
turbations from the aligned model (Res50*) demonstrate higher transferability compared to those
from an ensemble of source and witness models.

Source
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res18 87.53 67.411 52.074 58.85 67.12 50.22 31.88 24.65 19.16 30.91

Res50 66.97 85.02 72.14 64.88 75.89 49.56 32.14 25.23 22.58 28.96

Res50* 92.03 95.73 89.86 90.60 92.51 71.42 44.12 33.24 25.51 49.12

Res50 + Res18 91.25 91.56 80.60 75.90 85.36 60.11 19.01 15.95 10.90 27.10

2×Res50* 98.70 99.44 98.32 96.09 98.71 84.65 38.98 25.71 15.42 57.30

2×(Res50 + Res18) 97.69 98.73 96.81 92.95 98.32 78.61 23.87 18.06 12.25 41.77

9.66% and 16.86%, respectively. These results demonstrate that model alignment can be effectively

combined with model modification-based attacks to further improve transferability.

Note that the evaluation data selection strategy in Table 6.8 differs slightly from that in Table 6.7,

where perturbations are generated from both the source and target models, and transferability

evaluations are based on those misclassified by their originating models. Our evaluation considers

a wide range of target model architectures. However, since the attack algorithms are only available

for limited architectures, making it difficult to generate perturbations from some target models. As

such, results for MI-FGSM-LinBP and PGD-BPA are evaluated on 1000 randomly selected inputs

and are not included in Table 6.7 with other attacks.

Ensemble attacks: Given that an additional witness model is involved in the attack process,

it is important to compare perturbations produced by an aligned model with those generated by an

ensemble of the original source and witness model. In Table 6.9, we first demonstrate transferability

using the original Res18 and Res50, followed by a Res50 aligned with Res18 (Res50*). Next, we

incorporate the ensemble in logits scheme (Dong et al., 2018) into the PGD attack, and consider three

scenarios: an ensemble of the source and witness models (Res50+Res18), an ensemble of two aligned

models (2×Res50*), and an ensemble of two pairs of source-witness models (2×(Res50+Res18)).

We make two observations. First, perturbations from a single aligned model demonstrate higher

transferability compared to those from an ensemble of source and witness models, and an ensemble

of two aligned models not only further improves transferability but also surpasses the performance

of the four-model ensemble. Beyond the improved transferability, model alignment brings the added

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 123

benefits of faster inference times and lower memory requirements, presenting a significant advantage

over conventional ensemble approaches. Second, when targeting ViTs, perturbations generated from

ResNet ensembles exhibit limited transferability. For instance, using an ensemble of aligned Res50

models underperforms compared to using just a single aligned Res50. This observation is in line with

the previous result (Ma et al., 2023b), underscoring the specific challenges in transferring attacks

between different architectures.

6.6 Conclusions

In this work, we proposed model alignment as a novel perspective in improving the transferability

of adversarial examples. During alignment, the parameters of the source model are fine-tuned to

minimize an alignment loss which measures the divergence in the predictions between the source

and the witness model. We conduct a geometric analysis to study the changes in the loss landscape

resulting from this process to better understand the underlying effect of model alignment. Extensive

experiments on the ImageNet dataset demonstrate that perturbations generated from aligned source

models exhibit significantly higher transferability than those from the original source model.

6.6.1 Challenges and Limitations

Theoretical Analysis: A limitation of our study is the absence of a theoretical framework to

understand the model alignment process, and we consider it as future work. Our analysis is primarily

empirical, focusing on observing the perturbation differences and studying the effects of model

alignment on the loss surface. Having a theoretical framework to understand our method could

be helpful in developing new training strategies, which could directly result in source models that

achieve the same outcomes as those attained through the model alignment process.

Limited Improvement on ViTs: We observed that when CNN-based models are aligned using

ViTs, the improvement in adversarial transferability across most target models is less significant

compared to alignment using CNN-based models. However, the inverse is not true: ViT-based

models aligned using CNNs show a substantial improvement in transferability across all target

models. Future work could investigate the reasons for this discrepancy and develop alignment

strategies specifically designed for cross-architecture alignment.

Appendices

6.A Implementation Details

In the following, we provide additional details on the training configurations used in our experiments.

The source code for our method is available at https://github.com/averyma/model-alignment.

For all models considered in this work, we adhere to the optimization configurations as detailed in

the official PyTorch repository.1

CNN-based models: All CNN-based models are trained using the same configurations. Those

models include ResNet18 (Res18), ResNet50 (Res50), ResNet101 (Res101), VGG19, DenseNet121

1https://github.com/pytorch/vision/tree/main/references/classification

https://github.com/averyma/model-alignment

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 124

(DN121), and Inception-v3 (IncV3). They are trained for 90 epochs using SGD with an initial

learning rate of 0.1 and a momentum coefficient of 0.9. We start training with a 5-epoch learning

rate warmup, followed by a cosine decay schedule. The batch size is set at 256.

ViT-based models: The ViT-based models include ViT-T/16, ViT-S/16, ViT-B/16, and Swin

Transformers (SWIN). They are all trained for 300 epochs using AdamW. The initial learning rates

are set at 0.003 for ViT models and 0.001 for SWIN. For the ViT’s, training begins with a 30-epoch

learning rate warmup, followed by a cosine decay schedule, whereas for SWIN, the warmup is 20

epochs. The batch size is set at 1024. We use label smoothing during training. To ensure training

stability, the global gradient norm is clipped at 1.

Data augmentations: For the training of all CNN-based models, augmentation techniques are

random resizing, cropping, and flipping. For the training of all ViT-based models, we further

incorporate Mixup (Zhang et al., 2018) and Cutmix (Yun et al., 2019). Only random resizing,

cropping and flipping are used during the alignment process. Specifically, RandAugment (Cubuk et

al., 2020) is applied to ViT’s, while TrivialAugment (Müller et al., 2021) and random erasing (Zhong

et al., 2020) are applied to SWIN.

Model definitions: All model definitions are obtained from the torchvision library (maintainers

et al., 2016), with the exceptions of IncV3, ViT’s, and SWIN, which are obtained from the timm

library (Wightman, 2019).

Attack algorithms: All the attack algorithms used in this work are provided by the Torchattacks

library (Kim, 2020).

Alignment in the embedding space: When using a witness model with a different architec-

ture than the source model, the dimensions of their hidden representations are likely to be dif-

ferent, i.e., dim(z
[qs]
s (x)) ̸= dim(z

[qw]
w (x)), where qs and qw represent the layers just before the

fully-connected layer in their respective models. To address this dimensional mismatch, we follow

previous work (Park et al., 2019; Ma et al., 2022c; Romero et al., 2014; Chen et al., 2021) and apply

a linear projection to zs so its dimension matches that of zw. The weights of the linear projection

are treated as trainable parameters during the alignment process.

6.B Experiments on Additional Datasets

We focus on the ImageNet dataset in Section 6.5. Here, we supplement our results with experiments

on Stanford Cars (Krause et al., 2013) and Food101 (Bossard et al., 2014). On Stanford Cars,

SWIN is aligned using Res50. On Food101, Res50 is aligned using ConvNeXt-B (Liu et al., 2022).

Results in Table 6.10 show that the improved transferability achieved through model alignment is

also evident on other datasets.

6.C Improved Transferability on Defended Models

Evaluations in Section 6.5 are based on models without any defense mechanism. That is, all target

models are trained by minimizing the cross-entropy loss on the unperturbed training data. To

further demonstrate our approach, we evaluate using a normally trained Res50 with five defense

mechanisms, Bit-Red Xu et al., 2018, JPEG Guo et al., 2018, FD Liu et al., 2019, RS Cohen et

al., 2019, NRP Naseer et al., 2020. We adhere to the exact configuration of the defense methods

CHAPTER 6. IMPROVING ADVERSARIAL TRANSFERABILITY VIA MODEL ALIGNMENT 125

Table 6.10: Improved transferability via model alignment on other datasets (%). we sup-
plement our results with experiments on Stanford Cars (Krause et al., 2013) and Food101 (Bossard
et al., 2014). Aligned models are denoted using *. Results show that the improved transferability
achieved through model alignment is also evident on additional datasets.

Dataset Source
Target

ConvNeXt-B ViT-B

Stanford Cars
SWIN 68.77 17.6

SWIN* 88.89 50.67

Dataset Source
Target

SWIN ViT-B

Food101
Res50 26.67 12.36

Res50* 31.88 16.16

Table 6.11: Improved transferability on models equipped with defense methods (%). We
supplement our results by evaluating the transferability of perturbations on models equipped with
defense mechanisms. In particular, we evaluate using a normally trained Res50 with five defense
mechanisms. We adhere to the exact configuration of the defense methods as described in (Xie et al.,
2019). We also consider an adversarially trained Res50 (AT) (Wong et al., 2019a).

Source
Defense

n/a AT Bit-Red JPEG FD RS NRP

Res50 61.51 48.06 49.22 38.81 43.77 35.41 33.01

Res50* 88.07 52.15 54.70 53.03 50.59 43.99 41.19

as described in Xie et al. (2019). We also consider an adversarially trained Res50 (AT) (Wong

et al., 2019a). Results in Table 6.11 show that although the defense methods can generally reduce

transferability, using the aligned model still results in a significant improvement in transferability

compared to the original source model.

Chapter 7

Concluding Remarks

In this thesis, we investigated adversarial robustness in deep learning from multiple perspectives. We

began by focusing on the optimization process of training neural networks–both in terms of objectives

and algorithms. In Chapter 3, we introduced SOAR, a novel training objective that improves

adversarial robustness without relying on computationally expensive adversarial data generation,

and we empirically validated its effectiveness on image datasets. In Chapter 4, we analyzed the effect

of optimization algorithms on model robustness, showing that models trained with SGD are more

robust than those trained with adaptive methods such as Adam or RMSProp. As datasets grow larger

and more structured, we recognized the importance of hierarchical relationships among classes. Thus,

in Chapter 5, we introduced the concept of hierarchical adversarial robustness, proposed methods

for generating hierarchical adversarial perturbations, and presented an architectural strategy to

defend against them. Finally, we turned to the practical issue of perturbation transferability. In

Chapter 6, we proposed a fine-tuning approach called model alignment to enhance the transferability

of adversarial perturbations. Altogether, these contributions explore multiple key facets of the

adversarial robustness phenomenon, offering insights that advance our knowledge of adversarial

robustness and pave a path forward toward more robust deep learning systems.

7.1 Suggestions for Future Research

At the end of each chapter, we discussed the implications of our findings and suggested potential

directions for future research. Here, we highlight some of the most promising areas for further

investigation.

Understanding the Role of Normalization in Adversarial Robustness

In Chapter 3, we observed that networks with Batch Normalization layers do not benefit from

SOAR in terms of adversarial robustness. Similarly, in Chapter 4, we found that models with

Batch Normalization exhibit significantly lower accuracy under perturbations compared to those

without it. Normalization has become a standard practice in training deep neural networks, with

techniques such as Layer Normalization (Ba, 2016) widely adopted in training transformers (Brown

et al., 2020; Radford et al., 2021). While some studies have explored the connection between Batch

Normalization and model robustness (Galloway et al., 2019), a comprehensive investigation into the

126

CHAPTER 7. CONCLUDING REMARKS 127

relationship between various normalization techniques and adversarial robustness remains lacking.

Similar to our focus in Chapter 4, where we analyzed how optimization—a key element of the training

pipeline—affects adversarial robustness, future research could focus on how different normalization

strategies influence adversarial robustness.

Analysis Beyond Linear Models

In Chapters 3 and 4, our theoretical analyses relied exclusively on linear models. While these models

offer valuable insights, it is important to acknowledge the inherent non-linearity of neural networks.

This reliance on linear approximations limits the depth of understanding that can be achieved

regarding the complex dynamics of neural networks. Future research could address this gap by

leveraging techniques like neural tangent kernels (Jacot et al., 2018), which have been instrumental in

theoretically analyzing neural network learning dynamics, and tools such as saliency maps (Simonyan

et al., 2013; Ma et al., 2022a), which provide quantitative insights into how models focus on specific

parts of the input when making decisions. These approaches could offer a more comprehensive

understanding of neural network learning dynamics.

Theoretical Understanding of Model Alignment

In Chapter 6, we proposed model alignment as a novel approach to improving the transferability of

adversarial examples. While our empirical results demonstrate the effectiveness of model alignment,

a theoretical understanding of the model alignment process is still lacking. Model alignment can

benefit from a theoretical framework in three ways. First, a theoretical analysis could provide insights

into the underlying mechanisms of model alignment, helping to develop new training strategies that

achieve the same outcomes as model alignment without the need for fine-tuning. This is similar to

how SOAR was developed by theoretically building the connection between regularized training and

data augmentation with adversarial perturbations. Second, a theoretical framework could guide the

selection of witness models and the design of alignment strategies tailored to specific architectures.

Finally, a theoretical understanding of model alignment provides insight into the limitations of the

approach and identifies scenarios where it may not be effective.

Cross-architecture Model Alignment

An interesting observation in Chapter 6 is that model alignment for CNN-based source models

is more effective when the witness model is also a CNN, compared to when it is a transformer.

This discrepancy highlights the significance of network designs in the success of model alignment.

Future research could investigate the role of model architecture in shaping the effectiveness of model

alignment and propose alignment strategies specifically tailored to different architectures.

Adversarial Robustness in Generative Models

In this thesis, we focused on adversarial robustness in the context of classification. However, the rise

of generative models such as vision language models (VLMs) (Lu et al., 2019; Li et al., 2022a) and

large language models (LLMs) (Kenton et al., 2019; Brown et al., 2020; Dubey et al., 2024), has

introduced new challenges and opportunities for adversarial robustness research. Unlike traditional

CHAPTER 7. CONCLUDING REMARKS 128

classifiers, generative models operate in more open-ended settings, producing free-form outputs.

This means adversaries are no longer limited to inducing misclassifications, but can also generate

unsafe or unethical text (Zou et al., 2023; Ma et al., 2025) and images (Zhao et al., 2023; Zhou

et al., 2024). As the field evolves, extending adversarial robustness research beyond classification

to encompass generative tasks will be essential for ensuring the safe and responsible deployment of

these powerful models.

Bibliography

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang (2020). “Disentangling

adaptive gradient methods from learning rates”. In: arXiv preprint arXiv:2002.11803.

Nasir Ahmed, T Natarajan, and Kamisetty R Rao (1974). “Discrete cosine transform”. In: IEEE

transactions on Computers.

Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny Wu,

and Ji Xu (2021). “When does preconditioning help or hurt generalization?” In: International

Conference on Learning Representations (ICLR).

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein (2020). “Square

attack: a query-efficient black-box adversarial attack via random search”. In: Proceedings of the

European Conference on Computer Vision (ECCV).

Apple (2021). CSAM Detection: Technical Summary. https://www.apple.com/child-safety/

pdf/CSAM_Detection_Technical_Summary.pdf.

Anish Athalye (2021). NeuralHash Collider. https://github.com/anishathalye/neural-hash-

collider.

Anish Athalye, Nicholas Carlini, and David Wagner (2018). “Obfuscated Gradients Give a False

Sense of Security: Circumventing Defenses to Adversarial Examples”. In: International Confer-

ence on Machine Learning (ICML).

Hagai Attias and Christoph Schreiner (1996). “Temporal low-order statistics of natural sounds”. In:

Advances in Neural Information Processing Systems (NeurIPS).

Jimmy Lei Ba (2016). “Layer normalization”. In: arXiv preprint arXiv:1607.06450.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang (2021). “Recent advances in adversarial

training for adversarial robustness”. In: Proceedings of the International Joint Conferences on

Artificial Intelligence (IJCAI).

Yatong Bai, Brendon G Anderson, Aerin Kim, and Somayeh Sojoudi (2023). “Improving the Accuracy-

Robustness Trade-off of Classifiers via Adaptive Smoothing”. In: SIAM Journal on Mathematics

of Data Science.

Baidu (2017). Apollo. https://github.com/ApolloAuto/.

Lukas Balles and Philipp Hennig (2018). “Dissecting Adam: The sign, magnitude and variance of

stochastic gradients”. In: International Conference on Machine Learning (ICML).

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston (2009). “Curriculum learn-

ing”. In: International Conference on Machine Learning (ICML).

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon (2021a). “Revisiting batch normal-

ization for improving corruption robustness”. In: Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision (WACV).

129

https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://github.com/anishathalye/neural-hash-collider
https://github.com/anishathalye/neural-hash-collider
https://github.com/ApolloAuto/

BIBLIOGRAPHY 130

Philipp Benz, Chaoning Zhang, and In So Kweon (2021b). “Batch normalization increases adversarial

vulnerability and decreases adversarial transferability: A non-robust feature perspective”. In:

Proceedings of the International Conference on Computer Vision (ICCV).

Kush Bhatia, Kunal Dahiya, Himanshu Jain, Purushottam Kar, Anshul Mittal, Yashoteja Prabhu,

and Manik Varma (2016). The extreme classification repository: multi-label datasets and code.

http://manikvarma.org/downloads/XC/XMLRepository.html.

Chris M Bishop (1995). “Training with noise is equivalent to Tikhonov regularization”. In: Neural

computation.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool (2014). “Food-101–mining discriminative

components with random forests”. In: Proceedings of the European Conference on Computer

Vision (ECCV).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. (2020). “Language mod-

els are few-shot learners”. In: Advances in Neural Information Processing Systems (NeurIPS).

Samuel Burer and Adam N Letchford (2009). “On nonconvex quadratic programming with box

constraints”. In: SIAM Journal on Optimization.

Anirudh Buvanesh, Rahul Chand, Jatin Prakash, Bhawna Paliwal, Mudit Dhawan, Neelabh Madan,

Deepesh Hada, Vidit Jain, Sonu Mehta, Yashoteja Prabhu, et al. (2022). “Enhancing Tail Per-

formance in Extreme Classifiers by Label Variance Reduction”. In: International Conference on

Learning Representations (ICLR).

Junyoung Byun, Seungju Cho, Myung-Joon Kwon, Hee-Seon Kim, and Changick Kim (2022). “Im-

proving the transferability of targeted adversarial examples through object-based diverse input”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Qi-Zhi Cai, Chang Liu, and Dawn Song (2018). “Curriculum adversarial training”. In: Proceedings

of the International Joint Conferences on Artificial Intelligence (IJCAI).

Nicholas Carlini and David Wagner (2017). “Towards evaluating the robustness of neural networks”.

In: Proceedings of the IEEE Symposium on Security and Privacy (SP).

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang (2019).

“Unlabeled data improves adversarial robustness”. In: Advances in Neural Information Processing

Systems (NeurIPS).

Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe Vert (2022). “On mixup

regularization”. In: Journal of Machine Learning Research (JMLR).

Varun Chandrasekaran, Brian Tang, Nicolas Papernot, Kassem Fawaz, Somesh Jha, and Xi Wu

(2019). “Rearchitecting classification frameworks for increased robustness”. In: arXiv preprint

arXiv:1905.10900.

Zachary Charles, Harrison Rosenberg, and Dimitris Papailiopoulos (2019). “A geometric perspec-

tive on the transferability of adversarial directions”. In: International Conference on Artificial

Intelligence and Statistics (AISTATS).

Yanbei Chen, Yongqin Xian, A Koepke, Ying Shan, and Zeynep Akata (2021). “Distilling audio-visual

knowledge by compositional contrastive learning”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

http://manikvarma.org/downloads/XC/XMLRepository.html

BIBLIOGRAPHY 131

Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu (2019). “Improving black-box

adversarial attacks with a transfer-based prior”. In: Advances in Neural Information Processing

Systems (NeurIPS).

Lianhua Chi and Xingquan Zhu (2017). “Hashing techniques: A survey and taxonomy”. In: ACM

Computing Surveys (CSUR).

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter (2019). “Certified adversarial robustness via ran-

domized smoothing”. In: International Conference on Machine Learning (ICML).

comma.ai (2018). Openpilot. https://github.com/ApolloAuto/.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Be-

nenson, Uwe Franke, Stefan Roth, and Bernt Schiele (2016). “The cityscapes dataset for semantic

urban scene understanding”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-

marion, Mung Chiang, Prateek Mittal, and Matthias Hein (2021). “RobustBench: a standard-

ized adversarial robustness benchmark”. In: Advances in Neural Information Processing Systems

(NeurIPS) Datasets and Benchmarks Track (Round 2).

Francesco Croce and Matthias Hein (2019). “Minimally distorted adversarial examples with a fast

adaptive boundary attack”. In: International Conference on Machine Learning (ICML).

— (2020). “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free

attacks”. In: International Conference on Machine Learning (ICML).

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc Le (2019). “Au-

toAugment: Learning augmentation strategies from data”. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le (2020). “RandAugment: Practical au-

tomated data augmentation with a reduced search space”. In: Advances in Neural Information

Processing Systems (NeurIPS).

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das (2017). “Very deep convolutional

neural networks for raw waveforms”. In: IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP).

Jia Deng, Sanjeev Satheesh, Alexander C Berg, and Fei Li (2011). “Fast and balanced: Efficient label

tree learning for large scale object recognition”. In: Advances in Neural Information Processing

Systems (NeurIPS).

Yian Deng and Tingting Mu (2024). “Understanding and improving ensemble adversarial defense”.

In: Advances in Neural Information Processing Systems (NeurIPS).

Francis X Diebold (1998). Elements of forecasting. Thomson South-Western.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang (2018). “Max-margin

adversarial (mma) training: Direct input space margin maximization through adversarial train-

ing”. In: International Conference on Learning Representations (ICLR).

Yin Dong, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer (2019a). “A

Fourier perspective on model robustness in computer vision”. In: Advances in Neural Information

Processing Systems (NeurIPS).

https://github.com/ApolloAuto/

BIBLIOGRAPHY 132

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li (2018).

“Boosting adversarial attacks with momentum”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu (2019b). “Evading defenses to transferable

adversarial examples by translation-invariant attacks”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkor-

eit, and Neil Houlsby (2021). “An image is worth 16x16 words: Transformers for image recognition

at scale”. In: International Conference on Learning Representations (ICLR).

Harris Drucker and Yann Le Cun (1992). “Improving generalization performance using double back-

propagation”. In: IEEE Transactions on Neural Networks.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. (2024). “The llama 3 herd

of models”. In: arXiv preprint arXiv:2407.21783.

John Duchi, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online

learning and stochastic optimization.” In: Journal of Machine Learning Research (JMLR).

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul

Prakash, Tadayoshi Kohno, and Dawn Song (2018). “Robust physical-world attacks on deep

learning visual classification”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard (2017). “The robustness of

deep networks: A geometrical perspective”. In: IEEE Signal Processing Magazine.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur (2021). “Sharpness-aware mini-

mization for efficiently improving generalization”. In: International Conference on Learning Rep-

resentations (ICLR).

Joseph Fourier (1822). Théorie analytique de la chaleur (The Analytic Theory of Heat).

Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W Taylor (2019).

“Batch normalization is a cause of adversarial vulnerability”. In: arXiv preprint arXiv:1905.02161.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun (2013). “Vision meets robotics:

The kitti dataset”. In: International Journal of Robotics Research.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Watten-

berg, and Ian Goodfellow (2018). “Adversarial spheres”. In: arXiv preprint arXiv:1801.02774.

Xavier Glorot and Yoshua Bengio (2010). “Understanding the difficulty of training deep feedforward

neural networks”. In: International Conference on Artificial Intelligence and Statistics (AIS-

TATS).

Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku (2017). “Adversarial and clean data are not twins”.

In: arXiv preprint arXiv:1704.04960.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http://www.deeplearningbook.

org. MIT Press.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy (2015). “Explaining and harnessing adver-

sarial examples”. In: International Conference on Learning Representations (ICLR).

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 133

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio (2013).

“Maxout networks”. In: International Conference on Machine Learning (ICML).

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree (2021). “Regularisation of neural

networks by enforcing Lipschitz continuity”. In: Machine Learning.

Herbert Gross (2005). Handbook of Optical Systems: Fundamentals of Technical Optics.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel

(2017). “On the (statistical) detection of adversarial examples”. In: arXiv preprint arXiv:1702.06280.

Jindong Gu, Xiaojun Jia, Pau de Jorge, Wenqain Yu, Xinwei Liu, Avery Ma, Yuan Xun, Anjun Hu,

Ashkan Khakzar, Zhijiang Li, et al. (2023). “A Survey on Transferability of Adversarial Examples

across Deep Neural Networks”. In: Transactions on Machine Learning Research (TMLR).

Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Koushik Sen (2022). “LGV:

Boosting Adversarial Example Transferability from Large Geometric Vicinity”. In: Proceedings

of the European Conference on Computer Vision (ECCV).

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro

(2017). “Implicit regularization in matrix factorization”. In: Advances in Neural Information

Processing Systems (NeurIPS).

Chuan Guo, Jared S Frank, and Kilian Q Weinberger (2020a). “Low frequency adversarial pertur-

bation”. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI).

Chuan Guo, Jacob R Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q Weinberger

(2019). “Simple black-box adversarial attacks”. In: International Conference on Machine Learn-

ing (ICML).

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten (2018). “Countering

adversarial images using input transformations”. In: International Conference on Learning Rep-

resentations (ICLR).

Yiwen Guo, Qizhang Li, and Hao Chen (2020b). “Backpropagating linearly improves transferability

of adversarial examples”. In: Advances in Neural Information Processing Systems (NeurIPS).

Nilesh Gupta, Sakina Bohra, Yashoteja Prabhu, Saurabh Purohit, and Manik Varma (2021). “Gener-

alized zero-shot extreme multi-label learning”. In: Proceedings of the ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD).

Trevor Hastie (2009). The elements of statistical learning: data mining, inference, and prediction.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into rectifiers: Sur-

passing human-level performance on ImageNet classification”. In: Proceedings of the International

Conference on Computer Vision (ICCV).

— (2016a). “Deep residual learning for image recognition”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

— (2016b). “Identity Mappings in Deep Residual Networks”. In: Proceedings of the European Con-

ference on Computer Vision (ECCV).

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li (2019). “Bag of

tricks for image classification with convolutional neural networks”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky (2012). “Neural networks for machine learning

lecture 6a: overview of mini-batch gradient descent”. In: Lecture Notes.

BIBLIOGRAPHY 134

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean (2015). “Distilling the knowledge in a neural network”.

In: arXiv preprint arXiv:1503.02531.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer feedforward networks

are universal approximators”. In: Neural Networks.

Jeremy Howard (2019). Imagenette. https://github.com/fastai/imagenette/.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger (2017). “Densely

connected convolutional networks”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Jinggang Huang and David Mumford (1999). “Statistics of natural images and models”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári (2015). “Learning with a strong

adversary”. In: arXiv preprint arXiv:1511.03034.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander

Madry (2019). “Adversarial examples are not bugs, they are features”. In: Advances in Neural

Information Processing Systems (NeurIPS).

Sergey Ioffe and Christian Szegedy (2015). “Batch normalization: Accelerating deep network training

by reducing internal covariate shift”. In: International Conference on Machine Learning (ICML).

Arthur Jacot, Franck Gabriel, and Clément Hongler (2018). “Neural tangent kernel: Convergence

and generalization in neural networks”. In: Advances in Neural Information Processing Systems

(NeurIPS).

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang (2020). “Robust pre-training by adver-

sarial contrastive learning”. In: Advances in Neural Information Processing Systems (NeurIPS).

Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang, Sen Nie, and Shi Wu (2021).

“Too good to be safe: Tricking lane detection in autonomous driving with crafted perturbations”.

In: Proceedings of the USENIX Security Symposium.

Hamed Karimi, Julie Nutini, and Mark Schmidt (2016). “Linear convergence of gradient and proximal-

gradient methods under the Polyak- Lojasiewicz condition”. In: Joint European Conference on

Machine Learning and Knowledge Discovery in Databases.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova (2019). “Bert: Pre-training of

deep bidirectional transformers for language understanding”. In: Proceedings of the Conference

of the North American Chapter of the Association for Computational Linguistics (NAACL).

Hoki Kim (2020). “Torchattacks: A pytorch repository for adversarial attacks”. In: arXiv preprint

arXiv:2010.01950.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang (2020). “Adversarial self-supervised contrastive

learning”. In: Advances in Neural Information Processing Systems (NeurIPS).

Diederik P Kingma and Jimmy Ba (2015). “Adam: A method for stochastic optimization”. In:

International Conference on Learning Representations (ICLR).

Stepan Komkov and Aleksandr Petiushko (2021). “Advhat: Real-world adversarial attack on arcface

face id system”. In: Proceedings of the International Conference on Pattern Recognition (ICPR).

Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri (2020). “Face recognition systems:

A survey”. In: Sensors.

https://github.com/fastai/imagenette/

BIBLIOGRAPHY 135

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei (2013). “3D object representations for

fine-grained categorization”. In: Proceedings of the International Conference on Computer Vision

Workshops (ICCVW).

Alex Krizhevsky and Geoffrey Hinton (2009). “Learning multiple layers of features from tiny images”.

In: Master Thesis.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classification with

Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems

(NeurIPS).

Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel,

Andi Comissoneru, Matt Swann, and Sharon Xia (2020). “Adversarial machine learning-industry

perspectives”. In: IEEE Security and Privacy Workshops (SPW).

Alexey Kurakin, Ian Goodfellow, and Samy Bengio (2016). “Adversarial machine learning at scale”.

In: International Conference on Learning Representations (ICLR).

Yann LeCun (1998). The MNIST database of handwritten digits. http://yann.lecun.com/exdb/

mnist/.

Hyeungill Lee, Sungyeob Han, and Jungwoo Lee (2017). “Generative adversarial trainer: Defense to

adversarial perturbations with gan”. In: arXiv preprint arXiv:1705.03387.

Beitao Li, Edward Chang, and Yi Wu (2003). “Discovery of a perceptual distance function for

measuring image similarity”. In: Multimedia Systems.

Fei-Fei Li, Rob Fergus, and Pietro Perona (2004). “Learning Generative Visual Models from Few

Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories”. In:

Computer Vision and Pattern Recognition Workshop.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi (2022a). “BLIP: Bootstrapping language-

image pre-training for unified vision-language understanding and generation”. In: International

Conference on Machine Learning (ICML).

Maosen Li, Cheng Deng, Tengjiao Li, Junchi Yan, Xinbo Gao, and Heng Huang (2020a). “Towards

transferable targeted attack”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen (2022b). “Making Substitute Models More

Bayesian Can Enhance Transferability of Adversarial Examples”. In: International Conference

on Learning Representations (ICLR).

Yanxi Li and Chang Xu (2023). “Trade-off between robustness and accuracy of vision transformers”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, and Alan Yuille (2020b). “Regional

homogeneity: Towards learning transferable universal adversarial perturbations against defenses”.

In: Proceedings of the European Conference on Computer Vision (ECCV).

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft (2020). “Nesterov ac-

celerated gradient and scale invariance for adversarial attacks”. In: International Conference on

Learning Representations (ICLR).

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song (2016). “Delving into Transferable Adversarial

Examples and Black-box Attacks”. In: International Conference on Learning Representations

(ICLR).

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY 136

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo

(2021). “Swin transformer: Hierarchical vision transformer using shifted windows”. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie

(2022). “A convnet for the 2020s”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang, and Wujie Wen (2019). “Feature

distillation: Dnn-oriented jpeg compression against adversarial examples”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee (2019). “ViLBERT: Pretraining task-agnostic

visiolinguistic representations for vision-and-language tasks”. In: Advances in Neural Information

Processing Systems (NeurIPS).

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-

Sheng Hua (2023). “A survey on deep hashing methods”. In: Proceedings of the ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD).

Kaifeng Lyu and Jian Li (2020). “Gradient descent maximizes the margin of homogeneous neural

networks”. In: International Conference on Learning Representations (ICLR).

Avery Ma, Nikita Dvornik, Ran Zhang, Leila Pishdad, Konstantinos G Derpanis, and Afsaneh Fazly

(2022a). “SAGE: Saliency-Guided Mixup with Optimal Rearrangements”. In: British Machine

Vision Conference (BMVC).

Avery Ma, Fartash Faghri, Nicolas Papernot, and Amir-massoud Farahmand (2020). “SOAR: Second-

order adversarial regularization”. In: arXiv preprint arXiv:2004.01832.

Avery Ma, Amir-massoud Farahmand, Yangchen Pan, Philip Torr, and Jindong Gu (2024). “Improv-

ing adversarial transferability via model alignment”. In: Proceedings of the European Conference

on Computer Vision (ECCV).

Avery Ma, Yangchen Pan, and Amir-massoud Farahmand (2023a). “Understanding the robustness

difference between stochastic gradient descent and adaptive gradient methods”. In: Transactions

on Machine Learning Research (TMLR).

— (2025). “PANDAS: Improving Many-shot Jailbreaking via Positive Affirmation, Negative Demon-

stration, and Adaptive Sampling”. In: International Conference on Machine Learning (ICML).

Avery Ma, Aladin Virmaux, Kevin Scaman, and Juwei Lu (2021). “Improving Hierarchical Adver-

sarial Robustness of Deep Neural Networks”. In: arXiv preprint arXiv:2102.09012.

Chao Ma, Lei Wu, and Weinan E (2022b). “A qualitative study of the dynamic behavior for adaptive

gradient algorithms”. In: Mathematical and Scientific Machine Learning (MSML).

Wenshuo Ma, Yidong Li, Xiaofeng Jia, and Wei Xu (2023b). “Transferable adversarial attack for

both vision transformers and convolutional networks via momentum integrated gradients”. In:

Proceedings of the International Conference on Computer Vision (ICCV).

Yuchen Ma, Yanbei Chen, and Zeynep Akata (2022c). “Distilling knowledge from self-supervised

teacher by embedding graph alignment”. In: British Machine Vision Conference (BMVC).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu

(2018). “Towards deep learning models resistant to adversarial attacks”. In: International Con-

ference on Learning Representations (ICLR).

BIBLIOGRAPHY 137

Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk (2021). “On the robustness of vision trans-

formers to adversarial examples”. In: Proceedings of the International Conference on Computer

Vision (ICCV).

TorchVision maintainers and contributors (2016). TorchVision: PyTorch’s Computer Vision library.

https://github.com/pytorch/vision.

Stéphane Mallat (1999). A wavelet tour of signal processing. Elsevier.

Robert McAulay and Thomas Quatieri (1986). “Speech analysis/synthesis based on a sinusoidal

representation”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, and Stefano Soatto

(2017). “Analysis of universal adversarial perturbations”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard (2019).

“Robustness via curvature regularization, and vice versa”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Emmanuel Moulay, Vincent Léchappé, and Franck Plestan (2019). “Properties of the sign gradient

descent algorithms”. In: Information Sciences.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton (2019). “When does label smoothing help?”

In: Advances in Neural Information Processing Systems (NeurIPS).

Samuel G Müller and Frank Hutter (2021). “Trivialaugment: Tuning-free yet state-of-the-art data

augmentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli (2020).

“A self-supervised approach for adversarial robustness”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Shahbaz Khan, and Fatih Porikli

(2021). “On improving adversarial transferability of vision transformers”. In: International Con-

ference on Learning Representations (ICLR).

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng (2011).

“Reading digits in natural images with unsupervised feature learning”. In: Neurips Workshop on

Deep Learning and Unsupervised Feature Learning.

Alan V Oppenheim, John R Buck, and Ronald W Schafer (2001). Discrete-time signal processing.

Pearson.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram

Swami (2017). “Practical black-box attacks against machine learning”. In: Proceedings of the

ACM Asia Conference on Computer and Communications Security (ACM ASIACCS).

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram

Swami (2016). “The limitations of deep learning in adversarial settings”. In: IEEE European

Symposium on Security and Privacy (EuroS&P).

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho (2019). “Relational knowledge distillation”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute,

Jason Martin, and Duen Horng Chau (2023). “Robust principles: Architectural design principles

for adversarially robust cnns”. In: British Machine Vision Conference (BMVC).

https://github.com/pytorch/vision

BIBLIOGRAPHY 138

William B Pennebaker and Joan L Mitchell (1992). JPEG: Still image data compression standard.

Springer Science & Business Media.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-

laume Lajoie (2021). “Gradient starvation: A learning proclivity in neural networks”. In: Ad-

vances in Neural Information Processing Systems (NeurIPS).

Qian Qian and Xiaoyuan Qian (2019). “The implicit bias of adagrad on separable data”. In: Advances

in Neural Information Processing Systems (NeurIPS).

Yaguan Qian, Shuke He, Chenyu Zhao, Jiaqiang Sha, Wei Wang, and Bin Wang (2023). “LEA2: A

Lightweight Ensemble Adversarial Attack via Non-overlapping Vulnerable Frequency Regions”.

In: Proceedings of the International Conference on Computer Vision (ICCV).

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein

Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli (2019). “Adversarial robustness through

local linearization”. In: Advances in Neural Information Processing Systems (NeurIPS).

Zeyu Qin, Yanbo Fan, Yi Liu, Li Shen, Yong Zhang, Jue Wang, and Baoyuan Wu (2022). “Boosting

the transferability of adversarial attacks with reverse adversarial perturbation”. In: Advances in

Neural Information Processing Systems (NeurIPS).

Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli (2022). “Reducing excessive margin to achieve a

better accuracy vs. robustness trade-off”. In: International Conference on Learning Representa-

tions (ICLR).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. (2021). “Learning transfer-

able visual models from natural language supervision”. In: International Conference on Machine

Learning (ICML).

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy

(2021). “Do vision transformers see like convolutional neural networks?” In: Advances in Neural

Information Processing Systems (NeurIPS).

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang (2020). “Un-

derstanding and mitigating the tradeoff between robustness and accuracy”. In: International

Conference on Machine Learning (ICML).

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar (2018). “On the Convergence of Adam and Be-

yond”. In: International Conference on Learning Representations (ICLR).

Martin Riedmiller and Heinrich Braun (1993). “A direct adaptive method for faster backpropagation

learning: The RPROP algorithm”. In: IEEE International Conference on Neural Networks.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and

Yoshua Bengio (2014). “Fitnets: Hints for thin deep nets”. In: arXiv preprint arXiv:1412.6550.

Daniel L Ruderman (1994). “The statistics of natural images”. In: Network: Computation in Neural

Systems.

Anindya Sarkar, Anirban Sarkar, Sowrya Gali, and Vineeth N Balasubramanian (2021). “Adversarial

robustness without adversarial training: A teacher-guided curriculum learning approach”. In:

Advances in Neural Information Processing Systems (NeurIPS).

A. van der Schaaf and J.H. van Hateren (1996). “Modelling the power spectra of natural images:

statistics and information”. In: Vision Research.

BIBLIOGRAPHY 139

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry (2018).

“Adversarially robust generalization requires more data”. In: Advances in Neural Information

Processing Systems (NeurIPS).

Odelia Schwartz and Eero P Simoncelli (2001). “Natural signal statistics and sensory gain control”.

In: Nature Neuroscience.

Steven H Schwartz (2004). Visual perception: A clinical orientation. McGraw-Hill Medical Pub.

Division.

Uri Shaham, Yutaro Yamada, and Sahand Negahban (2018). “Understanding adversarial training:

Increasing local stability of supervised models through robust optimization”. In: Neurocomputing.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter (2016). “Accessorize to a

crime: Real and stealthy attacks on state-of-the-art face recognition”. In: Proceedings of the ACM

Conference on Computer and Communications Security (ACM CCS).

Yash Sharma, Gavin Weiguang Ding, and Marcus Brubaker (2019). “On the effectiveness of low

frequency perturbations”. In: Proceedings of the International Joint Conferences on Artificial

Intelligence (IJCAI).

Carlos N Silla and Alex A Freitas (2011). “A survey of hierarchical classification across different

application domains”. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD).

André Belotto da Silva and Maxime Gazeau (2020). “A General System of Differential Equations to

Model First-Order Adaptive Algorithms.” In: Journal of Machine Learning Research (JMLR).

Samuel Henrique Silva and Peyman Najafirad (2020). “Opportunities and challenges in deep learning

adversarial robustness: A survey”. In: arXiv preprint arXiv:2007.00753.

Carl-Johann Simon-Gabriel, Yann Ollivier, Leon Bottou, Bernhard Schölkopf, and David Lopez-

Paz (2019). “First-order adversarial vulnerability of neural networks and input dimension”. In:

International Conference on Machine Learning (ICML).

Eero P Simoncelli (1997). “Statistical models for images: Compression, restoration and synthesis”.

In: Conference on Signals, Systems, and Computers.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman (2013). “Deep inside convolutional net-

works: Visualising image classification models and saliency maps”. In: arXiv preprint arXiv:1312.6034.

Karen Simonyan and Andrew Zisserman (2014). “Very deep convolutional networks for large-scale

image recognition”. In: arXiv preprint arXiv:1409.1556.

— (2015). “Very deep convolutiona networks for large-scale image recognition”. In: International

Conference on Learning Representations (ICLR).

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman (2018). “Pixelde-

fend: Leveraging generative models to understand and defend against adversarial examples”. In:

International Conference on Learning Representations (ICLR).

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro (2018). “The

implicit bias of gradient descent on separable data”. In: Journal of Machine Learning Research

(JMLR).

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas

Beyer (2021). “How to train your vit? data, augmentation, and regularization in vision trans-

formers”. In: Transactions on Machine Learning Research (TMLR).

BIBLIOGRAPHY 140

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and

Lucas Beyer (2022). “How to train your ViT? Data, Augmentation, and Regularization in Vision

Transformers”. In: Transactions on Machine Learning Research (TMLR).

David Stutz, Matthias Hein, and Bernt Schiele (2019). “Disentangling adversarial robustness and

generalization”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna (2016). “Re-

thinking the inception architecture for computer vision”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,

and Rob Fergus (2014). “Intriguing properties of neural networks”. In: International Conference

on Learning Representations (ICLR).

Tesla (2018). Autopilot. https://www.tesla.com/autopilot/.

David J Tolhurst, Yoav Tadmor, and Tang Chao (1992). “Amplitude spectra of natural images”. In:

Ophthalmic and Physiological Optics.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry (2020). “On adaptive

attacks to adversarial example defenses”. In: Advances in Neural Information Processing Systems

(NeurIPS).

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel (2017). “The

space of transferable adversarial examples”. In: arXiv preprint arXiv:1704.03453.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry

(2018). “Robustness May Be at Odds with Accuracy”. In: International Conference on Learning

Representations (ICLR).

Richard E Turner (2010). “Statistical models for natural sounds”. PhD thesis. UCL (University

College London).

Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein Fawzi, and

Pushmeet Kohli (2019). “Are labels required for improving adversarial robustness?” In: Advances

in Neural Information Processing Systems (NeurIPS).

Fatemeh Vakhshiteh, Ahmad Nickabadi, and Raghavendra Ramachandra (2021). “Adversarial at-

tacks against face recognition: A comprehensive study”. In: IEEE Access.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,

and Yoshua Bengio (2019). “Manifold Mixup: Better representations by interpolating hidden

states”. In: International Conference on Learning Representations (ICLR).

Roman Vershynin (2018). High-dimensional probability. Cambridge University Press: An Introduc-

tion with Applications in Data Science.

Aladin Virmaux and Kevin Scaman (2018). “Lipschitz regularity of deep neural networks: analysis

and efficient estimation”. In: Advances in Neural Information Processing Systems (NeurIPS).

Martin J Wainwright and Eero Simoncelli (1999). “Scale mixtures of Gaussians and the statistics of

natural images”. In: Advances in Neural Information Processing Systems (NeurIPS).

Gregory K Wallace (1991). “The JPEG still picture compression standard”. In: Communications of

the ACM.

https://www.tesla.com/autopilot/

BIBLIOGRAPHY 141

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu (2021a). “The implicit bias for adaptive opti-

mization algorithms on homogeneous neural networks”. In: International Conference on Machine

Learning (ICML).

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing (2020a). “High-frequency component helps

explain the generalization of convolutional neural networks”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR).

Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and Zhangyang Wang (2022a).

“Removing batch normalization boosts adversarial training”. In: International Conference on

Machine Learning (ICML).

Hongjun Wang and Yisen Wang (2022b). “Self-ensemble adversarial training for improved robust-

ness”. In: International Conference on Learning Representations (ICLR).

Xiaosen Wang and Kun He (2021b). “Enhancing the transferability of adversarial attacks through

variance tuning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He (2021c). “Admix: Enhancing the trans-

ferability of adversarial attacks”. In: Proceedings of the International Conference on Computer

Vision (ICCV).

Xiaosen Wang, Kangheng Tong, and Kun He (2024). “Rethinking the Backward Propagation for

Adversarial Transferability”. In: Advances in Neural Information Processing Systems (NeurIPS).

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu (2020b). “Im-

proving adversarial robustness requires revisiting misclassified examples”. In: International Con-

ference on Learning Representations (ICLR).

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan (2023). “Better

diffusion models further improve adversarial training”. In: International Conference on Machine

Learning (ICML).

Pete Warden (2018). “Speech commands: A dataset for limited-vocabulary speech recognition”. In:

arXiv preprint arXiv:1804.03209.

Futa Waseda, Sosuke Nishikawa, Trung-Nghia Le, Huy H Nguyen, and Isao Echizen (2023). “Closer

look at the transferability of adversarial examples: How they fool different models differently”. In:

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

Zeming Wei, Jingyu Zhu, and Yihao Zhang (2023). “Sharpness-Aware Minimization Alone can Im-

prove Adversarial Robustness”. In: ICML Workshop on New Frontiers in Adversarial Machine

Learning.

Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein, and Yu-Gang Jiang

(2022). “Towards transferable adversarial attacks on vision transformers”. In: AAAI Conference

on Artificial Intelligence (AAAI).

Yuxin Wen, Shuai Li, and Kui Jia (2020). “Towards understanding the regularization of adversarial

robustness on neural networks”. In: International Conference on Machine Learning (ICML).

Ross Wightman (2019). PyTorch Image Models. https://github.com/rwightman/pytorch-

image-models. doi: 10.5281/zenodo.4414861.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht (2017). “The

marginal value of adaptive gradient methods in machine learning”. In: Advances in Neural In-

formation Processing Systems (NeurIPS).

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

BIBLIOGRAPHY 142

Fabian Woitschek and Georg Schneider (2021). “Physical adversarial attacks on deep neural networks

for traffic sign recognition: A feasibility study”. In: 2021 IEEE Intelligent Vehicles Symposium

(IV).

Eric Wong and Zico Kolter (2018). “Provable Defenses against Adversarial Examples via the Convex

Outer Adversarial Polytope”. In: International Conference on Machine Learning (ICML).

Eric Wong, Leslie Rice, and J Zico Kolter (2019a). “Fast is better than free: Revisiting adversarial

training”. In: International Conference on Learning Representations (ICLR).

Eric Wong, Frank Schmidt, and Zico Kolter (2019b). “Wasserstein adversarial examples via projected

sinkhorn iterations”. In: International Conference on Machine Learning (ICML).

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma (2020a). “Skip connections

matter: On the transferability of adversarial examples generated with resnets”. In: International

Conference on Learning Representations (ICLR).

Lei Wu and Zhanxing Zhu (2020b). “Towards understanding and improving the transferability of

adversarial examples in deep neural networks”. In: Asian Conference on Machine Learning.

Weibin Wu, Yuxin Su, Michael R Lyu, and Irwin King (2021). “Improving the transferability of

adversarial samples with adversarial transformations”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Han Xiao, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a novel image dataset for

benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747.

Zihao Xiao, Xianfeng Gao, Chilin Fu, Yinpeng Dong, Wei Gao, Xiaolu Zhang, Jun Zhou, and Jun

Zhu (2021). “Improving transferability of adversarial patches on face recognition with generative

models”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille

(2019). “Improving transferability of adversarial examples with input diversity”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yifeng Xiong, Jiadong Lin, Min Zhang, John E Hopcroft, and Kun He (2022). “Stochastic variance

reduced ensemble adversarial attack for boosting the adversarial transferability”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Weilin Xu, David Evans, and Yanjun Qi (2018). “Feature squeezing: Detecting adversarial examples

in deep neural networks”. In: Network and Distributed System Security Symposium.

Xilie Xu, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan S Kankanhalli (2024). “En-

hancing adversarial contrastive learning via adversarial invariant regularization”. In: Advances

in Neural Information Processing Systems (NeurIPS).

Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew

Touchet, Wesley Wilkes, Heath Berry, and Hai Li (2020). “Dverge: diversifying vulnerabilities

for enhanced robust generation of ensembles”. In: Advances in Neural Information Processing

Systems (NeurIPS).

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo

(2019). “CutMix: Regularization strategy to train strong classifiers with localizable features”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

BIBLIOGRAPHY 143

Chaoning Zhang, Philipp Benz, Adil Karjauv, Jae Won Cho, Kang Zhang, and In So Kweon (2022).

“Investigating top-k white-box and transferable black-box attack”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan

(2019). “Theoretically principled trade-off between robustness and accuracy”. In: International

Conference on Machine Learning (ICML).

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz (2018). “Mixup: Be-

yond Empirical Risk Minimization”. In: International Conference on Learning Representations

(ICLR).

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou (2021). “How Does

Mixup Help With Robustness and Generalization?” In: International Conference on Learning

Representations (ICLR).

Yechao Zhang, Shengshan Hu, Leo Yu Zhang, Junyu Shi, Minghui Li, Xiaogeng Liu, Wei Wan, and

Hai Jin (2024). “Why Does Little Robustness Help? A Further Step Towards Understanding

Adversarial Transferability”. In: Proceedings of the IEEE Symposium on Security and Privacy

(SP).

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin (2020). “Bridg-

ing mode connectivity in loss landscapes and adversarial robustness”. In: International Confer-

ence on Learning Representations (ICLR).

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min

Lin (2023). “On evaluating adversarial robustness of large vision-language models”. In: Advances

in Neural Information Processing Systems (NeurIPS).

Zhengyu Zhao, Zhuoran Liu, and Martha Larson (2021). “On success and simplicity: A second

look at transferable targeted attacks”. In: Advances in Neural Information Processing Systems

(NeurIPS).

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang (2020). “Random erasing data

augmentation”. In: AAAI Conference on Artificial Intelligence (AAAI).

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and

Jose M Alvarez (2022). “Understanding the robustness in vision transformers”. In: International

Conference on Machine Learning (ICML).

Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, and Tongliang Liu (2024). “Few-shot adversarial

prompt learning on vision-language models”. In: Advances in Neural Information Processing

Systems (NeurIPS).

Zhe Zhou, Di Tang, Xiaofeng Wang, Weili Han, Xiangyu Liu, and Kehuan Zhang (2018). “Invisible

mask: Practical attacks on face recognition with infrared”. In: arXiv preprint arXiv:1803.04683.

Haoran Zhu, Boyuan Chen, and Carter Yang (2023). “Understanding Why ViT Trains Badly on

Small Datasets: An Intuitive Perspective”. In: arXiv preprint arXiv:2302.03751.

Yao Zhu, Jiacheng Sun, and Zhenguo Li (2021). “Rethinking adversarial transferability from a data

distribution perspective”. In: International Conference on Learning Representations (ICLR).

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson (2023).

“Universal and transferable adversarial attacks on aligned language models”. In: arXiv preprint

arXiv:2307.15043.

BIBLIOGRAPHY 144

Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui, and Wei Li (2020). “Improving the

transferability of adversarial examples with resized-diverse-inputs, diversity-ensemble and region

fitting”. In: Proceedings of the European Conference on Computer Vision (ECCV).

	Introduction: The Brittleness of Neural Networks
	Contributions

	Adversarial Perturbations: Where to Find Them and How to Avoid Them
	Definitions
	Conjectures on the Existence of Adversarial Perturbations
	Generating Adversarial Perturbations
	The Robust Optimization Framework
	The Robustness-Accuracy Trade-off
	The Transferability of Adversarial Perturbations

	Regularized Training for Improving Adversarial Robustness
	Introduction
	Contributions

	Understanding Adversarial Training Using Linear Regression with an Over-parametrized Model
	Adversarial Regularization: An Alternative to Adversarial Training
	First-Order Adversarial Regularization
	Second-Order Adversarial Regularization
	Revisiting the Linear Regression Example
	Avoiding Gradient Masking
	Related Work

	Experiments
	Experiment Setup
	Evaluating Model Robustness

	Conclusions
	Challenges and Limitations

	Implementation Details
	Effect of the Number of Randomly Sampled z on SOAR Regularized Loss
	SOAR and FOAR with Different Initializations
	Robustness Under 2-norm Constrained Perturbations
	Robustness Improvement with Increasing Model Capacities
	Discussion on Gradient Masking

	Understanding the Robustness Difference between SGD and Adaptive Gradient Methods
	Introduction
	The Robustness Difference between Models Trained by Different Algorithms
	Contributions

	Background
	Optimizations with Adaptive Gradient Algorithms
	Frequency Representation of Signals

	A Claim on How Models Use Irrelevant Frequencies
	Observation I: Irrelevant Frequencies in Natural Signals
	Observation II: Model Robustness along Irrelevant Frequencies

	Linear Regression Analysis with an Over-parameterized Model
	Problem Setup
	Analysis on the Learning Dynamics of GD and signGD

	Connecting the Norm of Linear Models to the Lipschitzness of Neural Networks
	Conclusions
	Challenges and Limitations

	Implementation Details
	Generalization and Robustness Results
	Filtering Irrelevant Frequencies
	Linear Regression Analysis
	Understanding the Synthetic Dataset
	Understanding the Dynamics of signGD with = diag{02, 12, 0}
	From Irrelevant Frequencies to Spatially Redundant Dimensions

	Additional Figures

	Understanding and Improving Hierarchical Adversarial Robustness
	Introduction
	Contributions

	Hierarchical Adversarial Robustness
	Untargeted PGD's Ineffectiveness in Degrading Hierarchical Adversarial Robustness
	Generating Hierarchical Adversarial Perturbations
	Hierarchical Adversarial Robust Network
	Network Design
	Inference
	Training

	Experiments
	Experiment Setup
	Evaluation of Hierarchical Adversarial Robustness Using Hierarchical PGD
	Improving Hierarchical Adversarial Robustness with HAR

	Conclusions
	Challenges and Limitations

	Comparison of Trainable Parameters
	Results on CIFAR-10 and CIFAR-5x5 with -norm Constrained Perturbations
	Results on CIFAR-100 with 2-norm Constrained Perturbations
	Comparison of Clean Test Accuracy on CIFAR-10

	Improving Adversarial Transferability via Model Alignment
	Introduction
	Contributions

	Background
	Generating Transferable Perturbations
	Understanding Adversarial Transferability

	Formulation of Model Alignment
	Understanding Model Alignment
	Evaluating Similarity between the Source and Witness Model
	Aligned Model Exploits More Semantic Features
	Model Alignment Yields Smoother Loss Surface

	Experiments
	Experiment Setup
	Model Alignment Improves Transferability
	Ablation Studies

	Conclusions
	Challenges and Limitations

	Implementation Details
	Experiments on Additional Datasets
	Improved Transferability on Defended Models

	Concluding Remarks
	Suggestions for Future Research

	Bibliography

